## Typology with graphs and matrices

Steven Moran,<sup>1,2</sup> Martin Brümmer<sup>3</sup> & Michael Cysouw<sup>1</sup> <sup>1</sup>University of Marburg, <sup>2</sup>University of Zurich, <sup>3</sup>University of Leipzig

# Goals

- Access federated linguistic databases through graphs
- Extract data for typological analyses
- Efficient computation through matrix data calculations

# Talk map

- Overview of the technologies (the why)
- Overview of the LLOD (the how)
  - What is it?
  - What's in it?
  - How to access it
- What can you do with the data?

# Graphs and matrices

- are two representations of data that encode the same thing
- table data (what we all know and use)
- matrix is purely numerical table data
- graph (mathematical sense)

# Table data

| observations | word class  | last symbol |
|--------------|-------------|-------------|
| some         | adjective   | е           |
| words        | noun        | S           |
| as           | preposition | S           |
| example      | noun        | e           |

## Matrix

| observations | word class  | last symbol |
|--------------|-------------|-------------|
| some         | adjective   | e           |
| words        | noun        | S           |
| as           | preposition | S           |
| example      | noun        | e           |

| observations | adjective | noun | preposition | final e | final s |
|--------------|-----------|------|-------------|---------|---------|
| some         | I         | 0    | 0           | I       | 0       |
| words        | 0         | I    | 0           | 0       | I       |
| as           | 0         | 0    | I           | 0       | I       |
| example      | 0         | I    | 0           | 0       | I       |

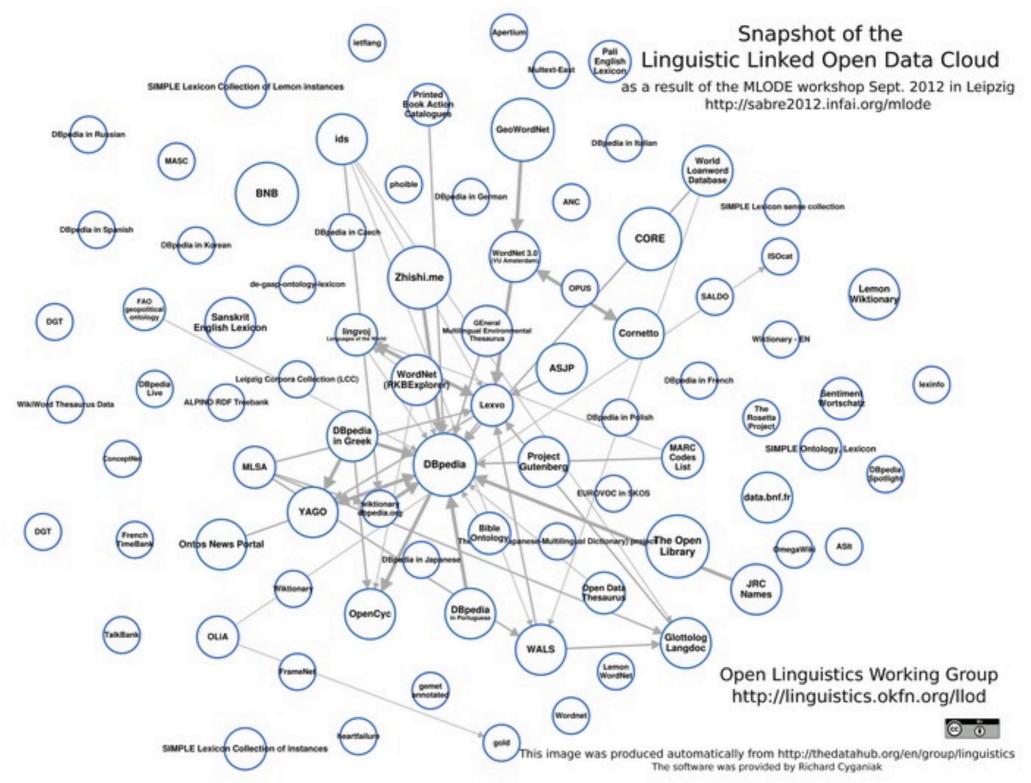
# Graph

| some    | adjective   |
|---------|-------------|
| words   | noun        |
| as      | preposition |
| example | final e     |
|         | final s     |

| observations | adjective | noun | preposition | final e | final s |
|--------------|-----------|------|-------------|---------|---------|
| some         | I         | 0    | 0           | I       | 0       |
| words        | 0         | I    | 0           | 0       | I       |
| as           | 0         | 0    | I           | 0       | I       |
| example      | 0         | I    | 0           | 0       | I       |

#### Linked Data

- "Linked Data" refers to Semantic Web framework practices for publishing and connecting structured data
  - uses a graph-based model for data interchange
  - encodes "knowledge" in statements encoded in subject-predicate-object triples
- syntactic and semantic interoperability
  - data aggregation, access and manipulation
  - consistent interpretation of exchanged data
    - dependent on common definitions and concepts in a vocabulary or ontology


- Anyone can say anything about anything
  - anyone can define their own naming conventions; devise their own models
- Open world assumption
  - the truth value of a statement is independent of whether or not it is known to be true
  - not knowing whether or not a statement is explicitly true, does not imply that the statement is false
- No unique names assumption
  - users cannot assume that any resources (concepts or relations) identified by URIs are actually different

- Difficult to deploy and maintain
- Accessing the underlying structures not so transparent
- Technology for federate queries still immature
- SPARQL query language involves learning
  - matches sets of triples patterns that match concepts and their relations by binding variables to match graph patterns
  - accessible through the browser via a "SPARQL Endpoint"

## Linguistics Linked Open Data cloud (LLOD)

- Open Working Group in Linguistics
  - leading development and implementation of LLOD
- Data sources already in Linked Data
  - Glottolog
  - WALS, WOLD, IDS
  - PHOIBLE
  - etc...

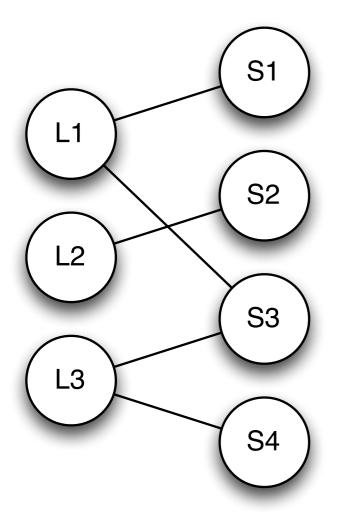
## http://nlp2rdf.lod2.eu/OWLG/llod/llod.svg



### Extracting table/matrix data from Linked Data graphs

- Give me all sources linked in the
- select distinct ?graph
  where {GRAPH ?graph {?s ?p ?o}}
- results:
  - http://mlode.nlp2rdf.org/resource/phoible/
  - http://quanthistling.info/lod/
  - http://mlode.nlp2rdf.org/resource/ids/
  - http://mlode.nlp2rdf.org/resource/wals/
  - http://wold.livingsources.org/

### Extracting table/matrix data from Linked Data graphs


• Give me all data across resources for a given ISO 639-3 language name identifier

# Example of extracting table/matrix data

- multivariate typology data
- this would be an example of querying features...
- "Don't categorize languages into gross types, use finegrained matrices."

## Extracting data from graph to matrix

• Return all data in PHOIBLE and WALS



| L1 | S1         |
|----|------------|
| L1 | <b>S</b> 3 |
| L2 | S2         |
| L3 | S3         |
| L3 | S4         |

|    | <b>S</b> 1 | <b>S</b> 2 | <b>S</b> 3 | <b>S</b> 4 |
|----|------------|------------|------------|------------|
| L1 | 1          | 0          | 1          | 0          |
| L2 | 0          | 1          | 0          | 0          |
| L3 | 0          | 0          | 1          | 1          |

# Example of extracting table/matrix data

- phoible data
- wals data
- combined data

- total 117.279 links between WALS codes and linguistic characteristics
- extracting data from the LLOD goes quick (STEVE: do you have any timing on the SPRQL query?)
- transformation into sparse matrix is only rewriting (very quick: most time lost in reading data)
- correlation all pairs of characteristics (3263x3263) via sparse matrix manipulation is quick (0.18 sec. on a MacBook Air)
- correction for genealogical relationship is no problem
- biggest problem: how to analyse such large correlation matrices!

## Correlating WALS with PHOIBLE

- Clustering results in a few interesting clusters across WALS and PHOIBLE:
- Cluster 42
  - WALS: f13A-3 (complex tone system)
  - PHOIBLE: / ], J /
- Cluster 47
  - WALS: f7A-2 (glottalized consonants, ejectives only)
  - PHOIBLE: / k', p', q', ts', t∫' /
- Cluster 54
  - WALS: f10A-1 (vowel nasalization present)
  - PHOIBLE: / ã, ẽ, ẽ, ĩ, õ, ɔ̃, ũ /

#### Conclusion

- Data often starts life as a table
- Disparate table data can be converted into graphs
- Graphs can be combined into larger graphs with links between them
- Combined data graphs can be queried and data extracted into matrices
- Matrices are efficient for certain computations