Dynamic Typology

Michael Cysouw – MPI-EVA Leipzig

Dynamic Typology

Michael Cysouw – MPI-EVA Leipzig Elena Maslova – Stanford University Dan Dediu – MPI Nijmegen

Two different perspectives

Two different perspectives

- Static Typology
 - investigate attested frequencies
 of language types

Two different perspectives

- Static Typology
 - investigate attested frequencies
 of language types

- Dynamic Typology
 - estimate probability
 of change of a language type

• Probability of type-change in a given period

- Probability of type-change in a given period
 - e.g. probability of 10 % in 1000 years

- Probability of type-change in a given period
- Agnostic as to the causes of the change

- Probability of type-change in a given period
- Agnostic as to the causes of the change
 - internally caused
 - through contact

- Probability of type-change in a given period
- Agnostic as to the causes of the change
- 3 Important points:

- Probability of type-change in a given period
- Agnostic as to the causes of the change
- 3 Important points:
 - it is a probability, so the claim is about averages over a large number of cases

- Probability of type-change in a given period
- Agnostic as to the causes of the change
- 3 Important points:
 - it is a **probability**, so the claim is about averages over a large number of cases
 - we try to estimate these probabilities, and any estimate has deviations

- Probability of type-change in a given period
- Agnostic as to the causes of the change
- 3 Important points:
 - it is a **probability**, so the claim is about averages over a large number of cases
 - we try to estimate these probabilities, and any estimate has deviations
 - the real (empirical) question is whether the deviations are limited

Туре В

Stable distribution

Instable distribution

Expected stable distribution

• Investigate the distribution of variation !

- Investigate the distribution of variation !
 - reconstructing changes on the basis of or together with a genealogical tree

- Investigate the distribution of variation !
 - reconstructing changes on the basis of or together with a genealogical tree
 - without assuming or inferring a tree:
 use variation among close languages

- Investigate the distribution of variation !
 - reconstructing changes on the basis of or together with a genealogical tree
 - without assuming or inferring a tree:
 use variation among close languages
 - either genealogically close
 or geographically close

• Two types (binary feature, A or B)

- Two types (binary feature, A or B)
- Many pairs of closely related languages

- Two types (binary feature, A or B)
- Many pairs of closely related languages
- No assumption about proto-stage of a pair (could be either A or B)

- Two types (binary feature, A or B)
- Many pairs of closely related languages
- No assumption about proto-stage of a pair (could be either A or B)
- Eight possibilities for the development ($A \rightarrow A+A$, $A \rightarrow A+B$, $A \rightarrow B+A$, $A \rightarrow B+B$, $B \rightarrow A+A$, $B \rightarrow A+B$, $B \rightarrow B+A$, $B \rightarrow B+B$)

• We can only observe the end stage

- We can only observe the end stage
- Consider F(D), the fraction of heterogeneous pairs (A+B, B+A)

- We can only observe the end stage
- Consider F(D), the fraction of heterogeneous pairs (A+B, B+A)
- It turns out that this fraction can be expressed as a function of

- We can only observe the end stage
- Consider F(D), the fraction of heterogeneous pairs (A+B, B+A)
- It turns out that this fraction can be expressed as a function of
 - p_{AB} : probability of change $A \rightarrow B$

- We can only observe the end stage
- Consider F(D), the fraction of heterogeneous pairs (A+B, B+A)
- It turns out that this fraction can be expressed as a function of
 - p_{AB} : probability of change $A \rightarrow B$
 - p_{BA} : probability of change $B \rightarrow A$

- We can only observe the end stage
- Consider F(D), the fraction of heterogeneous pairs (A+B, B+A)
- It turns out that this fraction can be expressed as a function of
 - p_{AB} : probability of change $A \rightarrow B$
 - p_{BA} : probability of change $B \rightarrow A$
 - ► F(A): current fraction of A languages

- We can only observe the end stage
- Consider F(D), the fraction of heterogeneous pairs (A+B, B+A)
- It turns out that this fraction can be expressed as a function of
 - p_{AB} : probability of change $A \rightarrow B$
 - p_{BA} : probability of change $B \rightarrow A$
 - F(A): current fraction of A languages

 $F(D) = F(A) \cdot 2 \cdot (p_{AB} - p_{BA}) + 2 \cdot p_{BA}(1 - p_{AB})$

Tone vs. no tone

(tone in 41.8 % of languages)

Maddieson, Ian (2005) Tone. In: Haspelmath et al. World Atlas of Language Structures. Oxford: Oxford University Press.

Tone vs. no tone

Scatterplot of p_A and p_D

Boxplots

Large consonant inventory (9.4 % of languages)

Maddieson, Ian (2005) Consonant inventories. In: Haspelmath et al. World Atlas of Language Structures. Oxford: Oxford University Press.

Large consonant inventory

Scatterplot of p_A and p_D

Boxplots

 $p_{\text{large} \rightarrow \text{non.large}} = 74\%$ $p_{\text{non.large} \rightarrow \text{large}} = 6\%$ Expected = 8 % Stability = 60 %

• A dynamic approach to typology is possible

- A dynamic approach to typology is possible
- Needed is a different sampling strategy:

- A dynamic approach to typology is possible
- Needed is a different sampling strategy:
 - not one language per stratum

- A dynamic approach to typology is possible
- Needed is a different sampling strategy:
 - not one language per stratum
 - but many languages per stratum, to investigate internal diversity

- A dynamic approach to typology is possible
- Needed is a different sampling strategy:
 - not one language per stratum
 - but many languages per stratum, to investigate internal diversity
- Ideally, much more quantitative information about internal variation of language families is needed