Disentangling Universals from History Or: What you see is **not** what you will get Michael Cysouw

Max Planck Institute for Evolutionary Anthropology, Leipzig

Or: A plea for "genealogical biased" sampling Michael Cysouw

Max Planck Institute for Evolutionary Anthropology, Leipzig

Tone (lan Maddieson)

Order of Object and Verb (Mathew Dryer)

Position of pronominal possessive affixes (Mathew Dryer)

Reactions to Large Areal Consistencies

- Matthew Dryer (starting from 1989):
 Problem for universals !
- Johanna Nichols (starting from 1992):
 Great for investigation of history !
- Elena Maslova (starting from 2001):

How strong is the historical influence ?

Dynamic Typology

- It is not the actual frequencies that matter
- It is the stable distribution that matters
- A stable distribution is a situation in which just as many languages change from A to B as change from B to A.
- The extent to which the actual is different from the stable situation signals an effect of history

Stable distribution

Instable distribution

Expected stable distribution

Estimating Transition Probabilities

- Are transitions probabilities measurable at all ?
- If yes: use group internal variation of many groups
- For example:
 - Instead of 100 genealogically unrelated languages
 - take 25 groups of 4 closely related languages

How to get probabilities of change ...

Elena Maslova's breakthrough

probability of
any change =
$$\alpha \cdot \text{frequency}$$
 (blue) + β
happening

For groups of three languages:

$$\alpha = 3 \cdot (p_{blue \rightarrow red} - p_{red \rightarrow blue})$$

 $\beta = 3 \cdot p_{red \rightarrow blue} \cdot (1 - p_{blue \rightarrow red})$

Tone (lan Maddieson)

Stable or not ?

	WALS frequency	Expected stable distribution
No tones	306 (58 %)	29 %
Simple tone system	I 32 (25 %)	21 %
Complex tone system	88 (17 %)	42 %

All characteristics in WALS

WALS frequencies

Cross-section of tone and vowel inventory (lan Maddieson)

Traditional Typological Interpretation

	No tone	Tone
Few vowels (<5)	75	
Many vowels (≥5)	231	206

Tone \rightarrow Many vowels

Statistical Interpretation

Fisher's Exact $p = 7 \cdot 10^{-10}$

Dryer's (1992) test

	Africa	Eurasia	SE Asia & Oceania	N. Guinea & Australia	North America	South America
Tone & Large	109	7	41	14	21	14
Tone & Small	I	0	0	I	8	I
No Tone & Large	14	73	44	33	32	35
No Tone & Small	2	3	7	25	21	17

Dryer's (1992) test

	Africa	Eurasia	SE Asia & Oceania	N. Guinea & Australia	North America	South America
Tone & Large	109	7	41	14	21	14
Tone	0.99	1.00	1.00	0.93	0.72	0.93
& Small						
No Tone & Large	0.88	0.96	0.86	0.57	0.60	0.67
No Tone	0.00	0.70	0.00	25	0.00	0.07
& Small	<u> </u>	5		23	ΖΙ	1/

Dryer's (1992) test

	Africa	Eurasia	SE Asia & Oceania	N. Guinea & Australia	North America	South America
Tone & Large	109	7	41	14	21	14
Tone & Small	I	0	0	I	8	I
No Tone & Large	14	73	44	33	32	35
No Tone & Small	2	3	7	25	21	17
Þ	.042	n.s.	.016	.013	n.s.	.053

Expected Stable Distribution

Stable	No tone	Tone
Few vowels (<5)	44	66
Many vowels (≥5)	172	241

Fisher's Exact p = .83

Conclusions

- Actual frequencies can be deceptive
- Expected stable frequencies can be estimated
- We need real samples for this (i.e. more than one language per group)

MAX-PLANCK-GESELLSCHAFT