Areas and Universals: Using the World Atlas of Language Structures

Michael Cysouw Max Planck Institute for Evolutionary Anthropology, Leipzig

Michael Cysouw Max Planck Institute for Evolutionary Anthropology, Leipzig

Or:

Against "unbiased" sampling

Or:

Michael Cysouw Max Planck Institute for Evolutionary Anthropology, Leipzig

What you see is not what you get

Or:

Michael Cysouw Max Planck Institute for Evolutionary Anthropology, Leipzig

Introducing The World Atlas of Language Structures

THE

WORLD

- A printed atlas with 142 world maps showing the areal distribution of structural characteristics
- On the maps, between 120 and 1,100 languages are shown
- In total, information is available for 2,500 languages
- In total, there are almost 60,000 datapoints

Tone (lan Maddieson)

Order of Object and Verb (Mathew Dryer)

Position of pronominal possessive affixes (Mathew Dryer)

Reactions to Large Areal Consistencies

- Matthew Dryer (starting from 1989):
 Problem for universals !
- Johanna Nichols (starting from 1992):
 Great for investigation of history !
- Elena Maslova (starting from 2001):

How strong is the historical influence ?

Dynamic Typology

- It is not the actual frequencies that matter
- It is the stable distribution that matters
- A stable distribution is a situation in which just as many languages change from A to B as change from B to A.
- The extent to which the actual is different from the stable situation signals an effect of history

Stable distribution

Instable distribution

Expected stable distribution

Estimating Transition Probabilities

- Are transitions probabilities measurable at all ?
- If yes: use group internal variation of many groups
- Instead of taking 100 genealogically unrelated languages, take 25 groups of four closely related languages

How to get probabilities of change ...

Elena Maslova's breakthrough

probability of
any change =
$$\alpha \cdot \text{frequency}$$
 (blue) + β
happening

For groups of three languages:

$$\alpha = 3 \cdot (p_{blue \rightarrow red} - p_{red \rightarrow blue})$$

 $\beta = 3 \cdot p_{red \rightarrow blue} \cdot (1 - p_{blue \rightarrow red})$

Tone (lan Maddieson)

Stable or not ?

	WALS frequency	Normalised frequency	Expected stable distribution
No tones	306 (58 %)	59 %	29 %
Simple tone system	132 (25 %)	27 %	21 %
Complex tone system	88 (17 %)	14 %	42 %

All characteristics in WALS

Cross-section of tone and vowel inventory (lan Maddieson)

Traditional Typological Interpretation

	No tone	Tone
Few vowels (<5)	75	
Many vowels (≥5)	231	206

Tone \rightarrow Many vowels Few vowels \rightarrow No tone

Statistical Interpretation

Fisher's Exact $p = 7 \cdot 10^{-10}$

Dryer's (1992) test

	Africa	Eurasia	SE Asia & Oceania	N. Guinea & Australia	North America	South America
Tone & Large	109	7	41	14	21	14
Tone & Small	I	0	0	I	8	I
No Tone & Large	14	73	44	33	32	35
No Tone & Small	2	3	7	25	21	17
Þ	.042	n.s.	.016	.013	n.s.	.053

Expected Stable Distribution

Stable	No tone	Tone	
Few vowels (<5)	79	66	
Many vowels (≥5)	232	2 96	

Fisher's Exact p = .83

Conclusions

- Actual frequencies can be deceptive
- Expected stable frequencies can be estimated
- We need real samples for this (i.e. more than one language per group)

MAX-PLANCK-GESELLSCHAFT