Inferring probabilities of change from areal distributions

Michael Cysouw Phillips Universität Marburg

Diachronic and functional explanations in typology

- The explananda are cross-linguistic distributions (aka 'typological patterns' or 'universals')
- My approach: try to restate (not: explain!) typological patterns as diachronic patterns
- Later: try to explain diachronic patterns (this part is still extremely speculative here)

Turn typological patterns into diachronic patterns

- Why?
- Typological patterns/distributions that we can observe in the world are clearly shaped by historical coincidences (so: actual ≠ possible)
- Deriving diachronic patterns from observed data is an attempt to abstract away from the coincidences skewing typological frequencies

Probabilistic reformulation of change

Probabilistic reformulation of change

Dynamic Typology

(Maslova 2002, Dediu & Cysouw 2013, cf. Dunn et al. 2011)

- It is not the actual frequencies that matter
- It is the stable distribution that matters
- a stable distribution is a situation in which just as many languages change from A to B as change from B to A.
- The extent to which the actual is different from the stable situation signals an effect of history

Stable distribution

Instable distribution

Expected stable distribution

Estimating Transition Probabilities

- Are transitions probabilities measurable at all ?
- Use group internal variation of many groups !
- For example:
 - Instead of 100 genealogically unrelated languages
 - take 25 groups of 4 closely related languages
 - Ideally, take related languages with knowledge about the historical relationship (cf. Dunn et al. 2011)

Figure 1 | **Two word-order features plotted onto maximum clade credibility trees of the four language families.** Squares represent order of adposition and noun; circles represent order of verb and object. The tree sample underlying this tree is generated from lexical data^{16,22}. Blue-blue indicates postposition,

object-verb. Red-red indicates preposition, verb-object. Red-blue indicates preposition, object-verb. Blue-red indicates postposition, verb-object. Black indicates polymorphic states.

80 | NATURE | VOL 473 | 5 MAY 2011

Dunn et al. 2011

How to get probabilities of change ...

Probabilistic reformulation of change

Tone (lan Maddieson)

Stable or not ?

	WALS frequency	Expected stable distribution
No tones	306 (58 %)	31 %
Simple tone system	132 (25 %)	23 %
Complex tone system	88 (17 %)	46 %

Cross-section of tone and vowel inventory

(Ian Maddieson)

Traditional Typological Interpretation

	No tone	Tone
Few vowels (<5)	75	
Many vowels (≥5)	231	206

Tone \rightarrow Many vowels

Statistical Interpretation

	No tone	Tone
Few vowels (<5)	75	
Many vowels (≥5)	23 I	206

 ϕ = .26, Fisher's Exact p = 7 · 10⁻¹⁰

Statistical Interpretation

	No tone	Tone
Few vowels (<5)	75 (+25)	II (-25)
Many vowels (≥5)	231 (-25)	206 (+25)

 ϕ = .26, Fisher's Exact p = 7 · 10⁻¹⁰

Dryer's (1992) test

	Africa	Eurasia	SE Asia & Oceania	N. Guinea & Australia	North America	South America
Tone & Large	109	7	41	14	21	14
Tone & Small	I	0	0	I	8	I
No Tone & Large	14	73	44	33	32	35
No Tone & Small	2	3	7	25	21	17

Dryer's (1992) test

	Africa	Eurasia	SE Asia & Oceania	N. Guinea & Australia	North America	South America
Tone & Large	109	7	41	14	21	14
Tone & Small	I	0	0	I	8	I
No Tone & Large	14	73	44	33	32	35
No Tone & Small	2	3	7	25	21	17
Þ	0,042	n.s.	0,016	0,013	n.s.	0,053

Expected Stable Distribution

Actual	No tone	Tone	
Few vowels (<5)	75		
Many vowels (≥5)	231	206	

Expected Stable Distribution

Stable	No tone	Tone
Few vowels (<5)	44	66
Many vowels (≥5)	172	241

 ϕ = .01, Fisher's Exact p = .83

Correspondences "s/t"

 Fit a model of sound changes on an unrooted tree based on all correspondences (using corHMM in R)

 Continuous-time Markov Chain transition rates:

Based on /s/ in German words: beißen, besser, das, größer, groß, heiß, muss, Wasser, weiße

Explanation?

- Transition probabilities are no explanation in itself, but 'just' an improved way to report on cross-linguistic distributions
- We need then of course to explain why certain transitions are more probable than others. This is maybe easier than explaining raw frequencies ?
- Tempting idea: maybe these probabilities are also at work at each decision by a speaker to formulate a single utterance