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• The explananda are cross-linguistic distributions  
(aka ‘typological patterns’ or ‘universals’)

• My approach: try to restate (not: explain!) 
typological patterns as diachronic patterns

• Later: try to explain diachronic patterns 
(this part is still extremely speculative here)
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Diachronic and functional 
explanations in typology



Turn typological patterns 
into diachronic patterns

• Why?

• Typological patterns/distributions that we can 
observe in the world are clearly shaped by 
historical coincidences (so: actual≠possible)

• Deriving diachronic patterns from observed 
data is an attempt to abstract away from the 
coincidences skewing typological frequencies
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Probabilistic reformulation 
of change
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BA

pA→B

pB→A

1-pA→B

1-pB→A
(no change)

(change)

(change)

(no change)



Probabilistic reformulation 
of change
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not-AA

pA→B

pB→A

1-pA→B

1-pB→A
(no change)

(change)

(change)

(no change)



Dynamic Typology 
(Maslova 2002, Dediu & Cysouw 2013, cf. Dunn et al. 2011)

• It is not the actual frequencies that matter

• It is the stable distribution that matters

• a stable distribution is a situation in which 
just as many languages change from A to B 
as change from B to A.

• The extent to which the actual is different 
from the stable situation signals an effect of 
history
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Type A Type B

50 200

probability of  
change: 20%

probability of  
change: 5%

10
10

Stable distribution



Type A Type B

50 200

probability of  
change: 20%

probability of  
change: 5%

10
10

Instable distribution

probability of  
change: 10%
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Type A Type B

83 167

probability of  
change: 10%

probability of  
change: 5%

8.3
8.3

Expected stable distribution

5/10+5×250= =10/10+5×250



Estimating Transition 
Probabilities

• Are transitions probabilities measurable at all ?

• Use group internal variation of many groups !

• For example:
‣ Instead of 100 genealogically unrelated languages

‣ take 25 groups of 4 closely related languages

‣ Ideally, take related languages with knowledge about 
the historical relationship (cf. Dunn et al. 2011)
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Figure 1 | Two word-order features plotted onto maximum clade credibility
trees of the four language families. Squares represent order of adposition and
noun; circles represent order of verb and object. The tree sample underlying
this tree is generated from lexical data16,22. Blue-blue indicates postposition,

object–verb. Red-red indicates preposition, verb–object. Red-blue indicates
preposition, object–verb. Blue-red indicates postposition, verb–object. Black
indicates polymorphic states.
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The world’s 
genera



A “sample” of 
the world’s 
languages

40% blue
60% red



A real sample 
stratified for 
genealogical 

grouping

How to get probabilities of change ... 



Change from 
blue to red:  

p = 2/12 = 17%



Change from 
red to blue:  

p = 2/18 = 11%



blue: 17/11+17 = 61% (actual 40 %)

red: 11/11+17 = 39 % (actual 60 %)

Expected Stable 
Distribution:



Problem:



Problem:

‣ Originally red with 
one change to blue ?

‣ Originally blue with 
two changes to red ?



Probabilistic reformulation 
of change
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BA

pA→B

pB→A

1-pA→B

1-pB→A
(no change)

(change)

(change)

(no change)



21

pA→B

pB→A

0 1

1
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pA→B

pB→A

0 1

1

Frequency  
of A = B



23

pA→B

pB→A

0 1

1

Frequency  
of A = B

lots of 
change, so 

highly variable

little change, 
so highly stable
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pA→B

pB→A

0 1

1

Frequency  
of A << B
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pA→B

pB→A

0 1

1

Frequency  
of A << B

lots of 
change, so 

highly variable

little change, 
so highly stable



Tone 
(Ian Maddieson)
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not-AA

pA→B

pB→A

1-pA→B

1-pB→A
(no change)

(change)

(change)

(no change)

No
Tone

Some
Tone



not-AA

pA→B

pB→A

1-pA→B

1-pB→A
(no change)

(change)

(change)

(no change)

No
Tone

0.04
0.96

0.09
0.91

Some
Tone



Stable or not ?
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WALS 
frequency

Expected stable 
distribution

No tones 306 (58 %) 31 %

Simple tone 
system 132 (25 %) 23 %

Complex tone 
system 88 (17 %) 46 %



Cross-section of tone and 
vowel inventory 

(Ian Maddieson)
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Traditional Typological 
Interpretation
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No tone Tone

Few vowels (<5) 75 11

Many vowels (≥5) 231 206

Tone → Many vowels



Statistical Interpretation
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ϕ = .26, Fisher’s Exact p = 7· 10-10

No tone Tone

Few vowels (<5) 75 11

Many vowels (≥5) 231 206



Statistical Interpretation
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Tone ~ Many vowels

ϕ = .26, Fisher’s Exact p = 7· 10-10

No tone Tone

Few vowels (<5) 75 (+25) 11 (-25)

Many vowels (≥5) 231 (-25) 206 (+25)



Dryer’s (1992) test
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Africa Eurasia
SE Asia & 
Oceania

N. Guinea 
& Australia

North 
America

South 
America

Tone  
& Large

109 7 41 14 21 14

Tone  
& Small

1 0 0 1 8 1

No Tone  
& Large

14 73 44 33 32 35

No Tone  
& Small

2 3 7 25 21 17



Dryer’s (1992) test
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Africa Eurasia
SE Asia & 
Oceania

N. Guinea 
& Australia

North 
America

South 
America

Tone  
& Large

109 7 41 14 21 14

Tone  
& Small

1 0 0 1 8 1

No Tone  
& Large

14 73 44 33 32 35

No Tone  
& Small

2 3 7 25 21 17

p 0,042 n.s. 0,016 0,013 n.s. 0,053



Expected Stable 
Distribution
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Actual No tone Tone

Few vowels (<5) 75 11

Many vowels (≥5) 231 206



Expected Stable 
Distribution
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ϕ = .01, Fisher’s Exact p = .83

Stable No tone Tone

Few vowels (<5) 44 66

Many vowels (≥5) 172 241



•Fit a model of sound 
changes on an unrooted 
tree based on all 
correspondences 
(using corHMM in R)

•Continuous-time Markov 
Chain transition rates:
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s
t
z
d
tʰ
other

Level = 15 %

Correspondences “s/t”

dt
0.85

3.93

0.13

z s
1.01

0.93

Based on /s/ in German words: 
beißen, besser, das, größer, groß, 

heiß, muss, Wasser, weiße



Explanation?
• Transition probabilities are no explanation in 

itself, but ‘just’ an improved way to report on 
cross-linguistic distributions

• We need then of course to explain why certain 
transitions are more probable than others. This  
is maybe easier than explaining raw frequencies ?

• Tempting idea: maybe these probabilities are also 
at work at each decision by a speaker to 
formulate a single utterance
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