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Diachronic and functional
explanations in typology

® The explananda are cross-linguistic distributions
(aka ‘typological patterns’ or ‘universals’)

® My approach: try to restate (not: explain!)
typological patterns as diachronic patterns

® |ater:try to explain diachronic patterns
(this part is still extremely speculative here)



Turn typological patterns
into diachronic patterns

Why!

Typological patterns/distributions that we can
observe in the world are clearly shaped by

historical coincidences (so: actual#possible)

Deriving diachronic patterns from observed
data is an attempt to abstract away from the
coincidences skewing typological frequencies
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Dynamic Typology

(Maslova 2002, Dediu & Cysouw 2013, cf. Dunn et al. 201 |)

® |t is not the actual frequencies that matter
® |t is the stable distribution that matters

® a stable distribution is a situation in which
just as many languages change from A to B
as change from B to A.

® The extent to which the actual is different
from the stable situation signals an effect of
history
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Estimating Transition
Probabilities

® Are transitions probabilities measurable at all ?
® Use group internal variation of many groups !

® For example:
» Instead of 100 genealogically unrelated languages
» take 25 groups of 4 closely related languages

» ldeally, take related languages with knowledge about
the historical relationship (cf. Dunn et al. 201 |)
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Figure 1 | Two word-order features plotted onto maximum clade credibility
trees of the four language families. Squares represent order of adposition and
noun; circles represent order of verb and object. The tree sample underlying
this tree is generated from lexical data'®*’. Blue-blue indicates postposition,
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N
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B ® FutunaWest
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M @ RapanuiEasterlsland
. TahitianModern
B ® Maori

M ® Hawaiian

object-verb. Red-red indicates preposition, verb—object. Red-blue indicates
preposition, object-verb. Blue-red indicates postposition, verb-object. Black
indicates polymorphic states.

. Dunn et al. 201 |
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How to get probabilities of change ...
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Change from
red to blue:

@ b=2/18=11%



Expected Stable
Distribution:

blue: '/11+17 = 6 1% (actual 40 %)
red: "/11+17= 39 % (actual 60 %)







Problem:

» Originally red with
one change to blue !

» Originally blue with
two changes to red !
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Tone

(lan Maddieson)

0 Mo tones [306]
O 2. Simple tone system [132]
@ 5. Complex tone system [88]
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Stable or not ?

WALS Expected stable

frequency distribution

No tones 306 (58 %)

Simple tone 132 (25 %) 23 9
system
Complex tone 88 (17 %) 46 %

system




Cross-section of tone and
vowel inventory

(lan Maddieson)




Traditional Typological
Interpretation

Few vowels (<5)

Many vowels (=5)

Tone — Many vowels
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Statistical Interpretation

Few vowels (<5)

Many vowels (=5)

75

231

206

¢ = .26, Fisher’s Exact p =7 10°1°
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Statistical Interpretation

Few vowels (<5) 75 (+25)

11 (-25)

Many vowels (=5) 231 (-25) 206 (+25)

¢ = .26, Fisher’s Exact p =7 10°1°

Tone ~ Many vowels
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Expected Stable
Distribution

Actual No tone

Few vowels (<5)

Many vowels (=5)

36



Expected Stable
Distribution

Stable

Few vowels (<5)

Many vowels (=5)

No tone

66

172

241

¢ = .01, Fisher’s Exact p = .83
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Correspondences “s/t”

® Fit 2a model of sound
changes on an unrooted
tree based on all

correspondences
(using corHMM in R)

OEEO0O0OMm

® Continuous-time Markov
Chain transition rates:

Based on /s/ in German words:
beiBen, besser, das, groBer, grof,
hei3, muss, Wasser, weil3e
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Explanation?

® T[ransition probabilities are no explanation in
itself, but ‘just’ an improved way to report on
cross-linguistic distributions

® Ve need then of course to explain why certain
transitions are more probable than others. This
is maybe easier than explaining raw frequencies !

® [empting idea: maybe these probabilities are also
at work at each decision by a speaker to
formulate a single utterance

39



