
Matrix Algebra for Language Comparison
Michael Cysouw

Draft version of May 15, 2017

1 Tables and Matrices
Matrices are nothing special: they are simply tables that contain numbers. For
introductory purposes, I will make a crucial terminological distinction here be-
tween the term ‘matrix’ and ‘table’. A table is a 2-dimensional structure withtable

rows and columns, and each cell on the cross-section of a row and a column
can contain some kind of information. A matrix is almost the same, the onlymatrix

difference being that each cell can only contain a number. As long as all in-
formation in a data table consists of numbers, there is no difference between a
table and a matrix. However, when there are characters or other non-numbers
(like missing information) in the table, the conversion into a matrix needs just
a little bit more attention (see Section 3).

As a start, I will simply assume that data tables consist of purely numeri-
cal data, and that all cells of the table are completely filled. Such data tables
are equivalent to matrices. As a first example, consider data tables with some
observations as rows (e.g. different languages or words) and various charac-
teristics of these observations as columns. For example, Table 1 shows a data
table with a few English words as observations and some simple characteristics
of these words as columns. When working with large amounts of such purely

obser- length in frequency frequency
vations letters of symbol s of symbol a
some 4 1 0
words 5 1 0
as 2 1 1
example 7 0 1

Table 1: Example of a data table with four rows and three columns

1

numerical matrices, it turns out to be highly profitable to use the mathematical
techniques of manipulating matrices, i.e. the domain of matrix algebra.matrix algebra

An important consideration for the coding of a data table as a matrix con-
cerns the coding of missing information. In the comparative study of languages
it is highly common that a substantial amount of data is missing (or, more gen-
eral, unevenly distributed), because we do not have enough information on the
language(s) in question. This typically occurs in the case of lesser-described lan-
guages and in the case of old stages of languages that are only attested through
scant manuscripts. For the proper algebraic treatment of missing data, it is best
to code missing data as zero in the data matrix, and to add a second matrix to
mark the missing data (or, equivalently, to mark the data that is available). If
there are just a few cells with missing data, then this second matrix can mostly
be ignored. However, when there are many cell with missing data, then some
more care has to be taken when interpreting the data (see Section 9).

Before diving into the technical details of matrix algebra, a central question
to be answered is why to take this perspective at all. The first and probably
most important reason to take this approach is that available computational
implementations of matrix algebra are highly efficient and quick, which makes
computations on large datasets easy to manage and fast to perform. There is
also a second benefit in that the computations used in a particular research
project can easily be written down in the form of formulas. These formulas
can both simplify the computer code to perform the calculations and simplify
the documentation of the research in publishable papers. Finally, the refor-
mulation of various research methods from the field of language comparison
into matrix algebra highlights many parallels across methods, and promises a
deeper understanding of the methodology of language comparison.

2 A Primer on Matrix Algebra
2.1 Basic Manipulations
When Table 1 is written as a matrix it will look as follows:

A=

 4 1 0
5 1 0
2 1 1
7 0 1

The transpose of a matrix, written here with a superscript T as AT , is thetranspose

same matrix, but with the rows and columns reversed (i.e. mirrored around

2

the diagonal from top left to bottom right).

AT =

 4 5 2 7
1 1 1 0
0 0 1 1

The vectoriඋation of a matrix, written here as a function vec(A) is a row-vectorization

by-row ‘unfolding’ of a matrix, leading to just a one-dimensional string of num-
bers, e.g. vec(AT) = [4 5 2 7 1 1 1 0 0 0 1 1].

There are two main kind of algebraic operations on matrices, namely entry-
wise operations and row-wise (or column-wise) operations. The most impor-
tant row-wise operation is the so-called matrix product to be discussed shortly.
However, I will first discuss entr൰-wise operations, which are operationsentry-wise

operations that are applied to each number in the matrix separately. For example, the
entry-wise the square of A will be the matrix with each entry squared, namely:

A2 =

 16 1 0
25 1 0
4 1 1
49 0 1

Likewise, the entry-wise multiplication of A with a scalar like 2 will result in
the following:

2 ∗ A=

 8 2 0
10 2 0
4 2 2

14 0 2

In the same sense it is possible to add two matrices together entry-by-entry.
Crucially, this entry-wise addition (or subtraction, division, etc.) is only de-
fined when the two matrices have exactly the same number of rows and
columns, for example A+ A is possible (which is of course the same as 2 ∗ A):

A+ A=

 4 1 0
5 1 0
2 1 1
7 0 1

+
 4 1 0

5 1 0
2 1 1
7 0 1

=
 8 2 0

10 2 0
4 2 2

14 0 2

= 2 ∗ A

Besides such entry-wise operations there are row/column-wise opera-row/column-wise

operations tions that work on complete rows (or columns) of matrices. The most impor-
tant of such operations is the special matrix product between two matrices.
A different row-wise product that will be used in various calculations is the
khatri-rao product.

3

obser- length in frequency frequency
vations letters of symbol s of symbol a
another 7 0 1
set 3 1 0
of 2 0 0
string 6 1 0
examples 8 1 1

Table 2: Another example of a data table with the same three columns as in Table 1, but
with five different words as rows

2.2 Similarity of Observations: Matrix Product
To first understand the matrix product, consider a second data table asmatrix product

shown in Table 2. This data table consists of five different observations as
rows (viz. the words another, set, of, string, examples), but exactly the same
three characteristics from Table 1 as columns. This is crucial condition for the
application of the matrix product. The matrix product can only be applied to
two matrices that share at least one dimension.

The idea of a matrix product is that all rows of Table 1 are compared to
all rows of Table 2. This comparison is based on the shared characteristics
in the columns of the two data tables. So, each word in the rows of Table 1 is
compared to each word in the rows of Table 2 on the basis on the characteristics
as specified in the columns of the data tables. The result of the matrix product
is a new matrix that contains association values (or similarity values) for each
pair of observations from Table 1 and 2.

The central question then is how to compute this similarity between rows,
and there will be a lot of discussion of different kinds of similarities (and their
counterparts, distances) in what follows. However, a basic notion of similarity
between two rows from the data tables is defined as the addition of pairwise
multiplication of the numbers in the rows, a function called dot product. Fordot product

example, the dot product similarity between some from Table 1 and another
from Table 2 is 28 (= 4 ∗ 7+ 1 ∗ 0+ 0 ∗ 1).

The reason for exactly this way of computing similarities lies in the histori-
cal origin of matrix algebra. It will turn out to be a very useful way of defining
similarity, and many other kinds of similarity can be derived from it, most
prominently through various kinds of normalisation (see Section 7). Because
of the widespread use of exactly this computation in mathematics and physics,
there has been extensive research to speed up these calculations. As an effect,

4

the calculation of matrix product is highly optimised and can effectively be
used with large data sets.1

There is an long tradition to write a matrix product in such a way that the
shared dimension (i.e. the columns in our example) appears as the columns
of the first matrix, but as the rows of the second matrix (the so-called ‘inner’
dimensions). To achieve this with our tables, we write them as matrices and
then one of the matrices will have to be transposed, as shown below. This
results in two matrices that are conformable, which simply means that theconformable

matrices number of columns of the first matrix is the same as the number of rows of the
second matrix.2

A · BT =

 4 1 0
5 1 0
2 1 1
7 0 1

 ·
 7 3 2 6 8

0 1 0 1 1
1 0 0 0 1

Now we have everything we need to define the matrix product, often writ-

ten as X · Y , using a midline dot, reminiscent of the dot product that forms
the basis of the calculations (but note that in larger formulae this dot is often
left out). It is crucial to differentiate the symbol for matrix product · from the
symbol for a entry-wise product ∗, because these represent completely different
operations on matrices.

The matrix product Z = X · Y is defined for two conformable matrices X
(with n rows and m columns) and Y (with m rows and k columns). The result
Z is a matrix listing similarities between all rows of X and columns of Y , so
the matrix Z will have n rows and k columns. The entry in row i and columns
j of Z is the dot product of row i of matrix X and column j of matrix Y . This
is illustrated below for the matrix product A · BT with the second row of A and
the fourth column of B highlighted. The resulting similarity of these two rows
1 The computations of the dot product can be summarised as (+,∗), i.e. ‘addition on (top of)

pairwise multiplication’. Although this dot product can be used to define many other kinds
of similarity, there are other useful definitions of similarity that cannot be easily derived
from it, like ‘maximum on multiplication’ (max,∗), i.e. the maximum of the pairwise mul-
tiplications, or ‘addition on maximum’ (+, max), i.e. the sum of the pairwise maxima, or
(max,+), or even (max, min), which is related to finding shortest paths in graphs.

2 An important additional distinction is the one between s൰ntacticall൰ conformable and
semanticall൰ conformable. Syntactically conformable simply means that the matrices
have the right size for the matrix product to work. Semantically conformable is a stronger
requirement, namely that the order of the inner dimensions is such that their ‘meaning’ is
the same, i.e. the names of the column numbers of the first matrix are in the same order as
the names of the rows of the second matrix.

5

is highlighted in the resulting matrix.

A · BT =

 4 1 0
5 1 0
2 1 1
7 0 1

 ·
 7 3 2 6 8

0 1 0 1 1
1 0 0 0 1

=
 28 13 8 25 33

35 16 10 31 41
15 7 4 13 18
50 21 14 42 57

The meaning of the resulting matrix can be interpreted as shown in Table

3, with higher numbers implying larger similarity. Note that these ‘similarities’
are rather meaningless in the current form, because of the strange combination
of characteristics in our data tables. The data tables consisted of two character-
istics with low numbers (the frequencies of certain letters) and one characteris-
tic with relatively high numbers (the total number of letters). The result of the
matrix product is dominated by the characteristic with the high numbers. To
counteract such influence of certain characteristics, various forms of weighting
and normalisation are necessary. This will be discussed in Section 7.

another set of string examples
some 28 13 8 25 33
words 35 16 10 31 41
as 15 7 4 13 18
example 50 21 14 42 57

Table 3: Similarities between all words in the rows of Table 1 and Table 2 based on the
matrix product

For presentational purposes, I will in the following use subscripts to indicate
the size of matrices. For example, the matrix A23 is a matrix with 2 rows and
3 columns. In general, the matrix AN P is a matrix with N rows and P columns.
Capitals A, B, C will be used to indicate matrices, while capitals N , M , P will be
used to indicate the sizes of the matrices. Note that these capitals N , M , P thus
are individual numbers, while A, B, C are matrices consisting of many numbers.

A noteworthy result of matrix multiplication happens with matrices that
consist of either one row or one column. Technically, there is nothing special
happening here, but the results might be surprising and confusing at first. Con-
sider a matrix A41 (i.e. a matrix of size 4× 1 with four rows and one column).

6

Then notice the large difference between A · AT = B44 and AT · A= B11:

A · AT =

 4
5
2
7

 · � 4 5 2 7
�
=

 16 20 8 28
20 25 10 35
8 10 4 14
28 35 14 49

AT · A= � 4 5 2 7
� ·
 4

5
2
7

= � 94
�

The multiplication A·AT can be thought of as the comparison of each of four
observations to the same four observations in which the comparison is made on
just one characteristic. Because there are 4 times 4 comparisons being made,
the result has 16 different entries. In contrast, the multiplication AT · A can
be interpreted as a comparison of just one observation to itself on the basis
of four different characteristics. The result is just one number for the single
comparison being computed.

Matrix multiplication is thus a notion of similarity between all rows of one
matrix and all columns of a second matrix. In many practical situations this
similarity will be computed simply between all pairs of rows of a single matrix.
This means, the first and the second matrix are simply the same matrix, i.e.
A · AT .

A special matrix product that will sometimes be of use is the binar൰ prod-binary product

uct, which will be written as (A · B)binary. With the binary product, we are only
interested in whether the result of matrix product is non-zero, i.e. there is some
kind of similarity attested. In practice, this means that the binary product has
an entry of 1 when the two rows share some characteristics, and 0 when they
share nothing.

2.3 Cross-section of Characteristics: Khatri-Rao Product
A completely different row-wise operation is the khatri-rao product.3 Thiskhatri-rao product

product is used with a different purpose as the standard matrix product. The
Khatri-Rao product is used when we have two matrices with the same observa-
tions (as rows), but with different characteristics (as columns). Note that this
is the reversed situation as with the matrix product, where we have different
3 The Khatri-Rao product is sometimes also called a row-wise kronecker product. Note

that in the literature, this product is mostly applied column-wise, but that is completely
equivalent to the current treatment, only for transposed matrices.

7

observations has s has o has m
some 1 1 1
words 1 1 0
as 1 0 0
examples 1 0 1

Table 4: First example data table for the Khatri-Rao product.

observations has e has a
some 1 0
words 0 0
as 0 1
examples 1 1

Table 5: Second example data table for the Khatri-Rao product.

observation (as rows), but the same characteristics (as columns). To differenti-
ate between the different kinds of products, the Khatri-Rao product is indicated
with the symbol ⊙.

As an example, consider the data Tables 4 and 5. These tables have the same
observations (the four words: some, words, as, examples), but different charac-
teristics. The characteristics are all binary yes/no questions, which makes this
example easier to interpret. The Khatri-Rao product now takes the combina-
tion of these two data tables, looking at the cross-section of characteristics, as
shown in Table 6.

Looking more in-depth into the Khatri-Rao product, this product actually

has has has has has has
observations s & e s & a o & e o & a m & e m & a
some 1 0 1 0 1 0
words 0 0 0 0 0 0
as 0 1 0 0 0 0
examples 1 1 0 0 1 1

Table 6: Khatri-Rao product of Tables 4 and 5, in effect looking at the cross-section of
characteristics.

8

makes a three-dimensional array out of two matrices. For example, the first
row of Table 4 [1 1 1] is crossed with the first row of Table 5 [1 0], leading to
a matrix. 1

1
1

 · � 1 0
�
=

 1 0
1 0
1 0

This is then performed for each of the four rows, leading to four matrices that
are stacked on top of each other. Mathematically, the result is then normally
called a three-dimensional tensor. Note that the data in Table 4 is a matrix Atensor

of dimensions 4× 3 and the data in Table 5 is a matrix B of dimensions 4× 2.
As a three-dimensional array, the product A⊙B would then be a tensor C with
dimensions 4× 3× 2. This three-dimensional structure is then ‘unfolded’ as a
matrix with dimensions 4× (3 ∗ 2) by vectorising each ‘plane’ of the tensor,vectorising

for example continuing the example from above:

vec

 1 0
1 0
1 0

= � 1 0 1 0 1 0
�

Doing this for all rows of the original matrices A and B leads to the following
complete Khatri-Rao product (cf. Table 6):

A⊙ B =

 1 1 1
1 1 0
1 0 0
1 0 1

⊙
 1 0

0 0
0 1
1 1

=
 1 0 1 0 1 0

0 0 0 0 0 0
0 1 0 0 0 0
1 1 0 0 1 1

2.4 Combination of Characteristics: Block Matrices
note that [A|B] · [A|B]T = AAT + BBT

column binding
�

A · B C · D �
=
�

A C
� · � B 0

0 D

�
special case A= C �

A · B A · D �
= A · � B D

�
row binding

9

�
A · B
C · D

�
=
�
(A · B)T (C · D)T �T

=

��
BT DT

� · � AT 0
0 C T

��T

so �
A · B
C · D

�
=

�
A 0
0 C

�
·
�

B
D

�
special case B = D �

A · B
C · B

�
=

�
A
C

�
· B

3 Nominal Data
Although the prospect of using matrix algebra for language comparison is tan-
talising, there is an important proviso. Namely, a large part of the data tables
arising in the context of language comparison is not numerical. Much data
is of the so-called ‘nominal’ type (also called ‘categorical’). Instead of listing
numbers, such data tables contain categories. An example of a data table il-
lustrating such nominal data is shown in Table 7. This table contains four
observations (viz. the words some, words, as, example) and two classifications.
The first classification assigns to each word a word class, and the second clas-
sification describes what kind of symbol occurs at the end of the word. Such
classifications consist of a fixed set of alternatives, with no obvious numerical
equivalent. They are called nominal variables or also categorical variables.nominal variables

observations word class last symbol
some adjective e
words noun s
as preposition s
example noun e

Table 7: Example of nominal (or categorical) characteristics

To make such data amenable for matrix algebra, they have to be converted
into a so-called incidence matrix. The basic idea of an incidence matrix isincidence matrix

that each class of a nominal variables (e.g. ‘adjective’ or ‘noun’ in the example

10

observations adjective noun preposition final e final s
some 1 0 0 1 0
words 0 1 0 0 1
as 0 0 1 0 1
example 0 1 0 1 0
Table 8: Incidence coding of the nominal variable shown in Table 7

Table 7) is interpreted as a separated characteristic. Such a recoding is shown
in Table 8. The cells of this table are now all numbers, so this table can be
turned into a matrix.

However, there are a few special aspects of such incidence matrices that
set them apart from ‘regular’ numerical matrices. First, although the numbers
1 and 0 seem to suggest a binary numerical characteristic, strictly speaking
that is not the case. The columns of the incidence table are so-called ‘unary’
characteristics in which only the presence of 1 has meaning. The presence of
0 actually does not mean that the characteristic is not present. This seemingly
hair-splitting distinction becomes important when there are more than one op-
tion possible and when there is missing data in the original data table (see
Section 8 for the discussion of treating missing data).

Second, the columns of this incidence matrix form groups, namely those
columns that belong to the same original nominal variable. This information
is important for the proper algebraic usage of the data, and has to be coded
in some way. A practical way to encode this information is to prepare an
index matrix for such incidence matrices that consist of recodings of multipleindex matrix

characteristics. The index matrix just codes which column of the incidence
matrix belong to which original nominal variable (included as rows of the index
table).4 The data from Table 7 can then be coded as the following two matrices:

Incidence: A=

 1 0 0 1 0
0 1 0 0 1
0 0 1 0 1
0 1 0 1 0

 , Index: X =

�
1 1 1 0 0
0 0 0 1 1

�

When the original nominal data table has N rows (observations) and M columns
(nominal variables), and the nominal variables have in total K different classes,
then the recoded incidence matrix ANK has N rows and K columns, and the
4 Note that the index matrix is actually just another incidence matrix of a nominal variable,

namely the classification of the columns of the first incidence matrix.

11

index table XMK has M rows and K columns. A direct consequence of this
recoding is that the matrix product A · X T is a matrix of the same size as the
original data table:

ANK · X T
MK =

 1 0 0 1 0
0 1 0 0 1
0 0 1 0 1
0 1 0 1 0

 ·

1 0
1 0
1 0
0 1
0 1

=
 1 1

1 1
1 1
1 1

The product of incidence and index table represents the amount of informa-
tion that was available in the original data table. In the present example this
is rather uninteresting, because the original data table was a 4× 2 table with
exactly one piece of information in each cell. However, when there would have
been missing data, then the A·X T would tell us exactly where this missing data
was located in the original table (by showing a zero). Also, it can happen that
a particular observation belongs to more than one class (e.g. because of un-
certainty in the classification, or because there has been some aggregating of
slightly different classifications). This can easily be coded in the incidence ma-
trix (the observation simply gets various 1s for different classes of one variable).
In such a situation, the product of incidence and index matrix will include a
number higher than one, indicating that there were more than one possibility
in the original data.

4 Graphs and Matrices
There is a close connection between matrices and graphs, and sometimes data
manipulations using matrix algebra can be easier interpreted when looking at
them as a graph. A graph consists of vertices (‘nodes’) and edges linkingvertices

edges them. Edges can have a numeric value, called weight, and edges can be di-
rected (‘arrows’) or undirected (‘just links’). In the current context, all graphs
will be undirected, and mostly unweighted.

The basic notion connecting matrices and graphs is the so-called adja-adjacency matrix

cenc൰ matrix. An adjacency matrix is a square matrix having a row and
a column for each vertex. The position [i, j] in the matrix will be zero if vertex
i is not connected to vertex j. In contrast, when the vertices are connected,
then the matrix will have an entry of 1. When the edges have weight, then the
numerical weights are included in the matrix instead of just the 1s. Undirected
graphs are symmetrical, i.e. the entry [i, j] is identical to the entry [j, i]. Fur-
ther, the entries on the diagonal will be 0, as in the current case we have no

12

need for special ‘self-linking’ edges. For example, the graph shown in Figure 1
has the following adjacency matrix:

A=

 0 1 1 1
1 0 1 0
1 1 0 0
1 0 0 0

1

2

3

4

Figure 1: A simple graph.

X1

X2

X3

X4

Y3

Y1

Y2

Figure 2: A bipartite graph.

A slight variation is a so-called biadjacenc൰ matrix in which the rowsbiadjacency matrix

and columns are not identical. This is used to represent a bipartite graph.bipartite graph

Bipartite graphs are graphs in which all edges are between two groups of ver-
tices. An example is shown in Figure 2. In such a case, the adjacency matrix
can be reduced to just show one set of vertices as rows (e.g. the ones marked ‘X’
in the Figure) and the other as columns (marked ‘Y’). The biadjacency matrix
then is:

B =

 0 1 0
1 0 1
0 0 1
0 1 0

and the corresponding adjacency matrix is (using a so-called block matrixblock matrix

notation, i.e. each entry in A is a matrix in itself):

A=

�
044 B
BT 033

�
13

X1

X2

X3

X4

Y3

Y1

Y2

Z1

Z2

Z3

Z4

Z5

X1

X2

X3

X4

Z1

Z2

Z3

Z4

Z5

Figure 3: Left: two linked bipartite graphs. Right: all connections between X and Y without
intermediate nodes.

The interesting question now becomes, what it means to take the matrix
product between two graphs. As an example, consider the graph on the left
side of Figure 3. Below, the connections between X and Y are coded as biad-
jacency matrix A, and the connections between Y and Z are coded in matrix
B. The matrix product A · B then represents all connections that exist between
X and Z , as shown to the right of Figure 3. So, matrix multiplication between
biadjacency matrices represents a notion of finding all possible connections.
Note that when there are two different paths linking a vertex from X with a
vertex from Z (e.g. X2 and Z3 in Figure 3, being connected both via Y1 and Y3),
then the matrix product lists the number of possible paths.

A · B =
 0 1 0

1 0 1
0 0 1
0 1 0

 ·
 0 0 1 1 0

1 1 0 0 0
0 0 1 0 0

=
 1 1 0 0 0

0 0 2 1 0
0 0 1 0 0
1 1 0 0 0

With weighted graphs the meaning of the matrix product becomes a bit less

intuitive. Instead of just summarising all attested connections, the numbers in
the resulting matrix are the multiplied weights of the individual connections.
And when there are multiple paths, then the resulting value will the the sum
of the products of all possible paths.5 Often the only information of interest
is whether two vertices are connected or not, then is suffices to look at the
binar൰ product (A · B)binary, discussed at the end of Section 2.binary product

5 It seems more intuitive to have to matrix product of two graphs result in the shortest path,
for example. This can be achieved by taking the (min,+) matrix product (see footnote 1 on
page 5). Note that such alternative definitions of the matrix product are not available in
implementations of fast matrix multiplication, so in practice this option is not viable.

14

5 Sparse Matrices
When using matrix algebra for large datasets, there will be many instances of
so-called sparse matrices. Sparse matrices are matrices in which the largesparse matrices

majority of entries are zero. Actually, there is nothing special with such sparse
matrices: all algebra works just as with all other matrices. The only import
consideration is that large matrices possibly take up a lot of RAM (“working
memory”) during computations. For that reason special implementations have
been developed to more economically deal with sparse matrices. Basically, the
principle is to only encode the non-zero entries of the matrix, and assume that
everything else is zero. When dealing with matrices that only have non-zero
numerical entries for every 10 or 100 thousand zeros (which is nothing special),
such a sparse recoding makes a crucial difference for the practical feasibility of
computations.

In most cases, the available sparse matrix routines suffice completely for
working with spare matrices.6 However, there are two important consider-
ation of which to take note. First, there are various different sparse formats,
which are more or less economical for different operations. As a result, a sparse
matrix might have to be converted to another format to optimise specific com-
putations. The implementations in R or Python are being enhanced to do any
such conversion on the fly when necessary, but this does not (yet) always work.
So, sometimes a slow operation might be sped up considerably by manually
changing the sparse matrix format.

Second, care has to be taken in computations that sparsity is not lost. This
can happen quite easily. For example, when taking an entry-wise logarithm
of a sparse matrix, all empty cells are suddenly filled with content (because
log(0) = −∞), and sparsity is lost. This results in an immediate filling of the
complete RAM of most computers, reducing the speed of any computation to
a crawl. Such unwanted effects are normally not automatically caught by the
implementations, so care has to be taken not to let this happen. For example, in
the case of the logarithm above, it is mostly the case that the logarithm should
only be taken for the non-zero cells. Yet, this has to be explicitly specified in
all presently available implementations.

In this methodological survey, I will assume that zero cells in sparse ma-
trices do not take part in any calculations. For example, the logarithm of zero
remains zero, and zero divided by zero also remains zero. Or, differently for-
mulated, for sparse matrices I will assume that log(0) = 0 and 0/0= 0.
6 For sparse matrix routines, see for example, the library Matrix in R, or ScyPi ssm in Python.

15

5.1 Building Sparse Matrices
There are many ways to actually build sparse matrices from some data table.
A useful approach is to use the so-called coordinate format, specifying thecoordinate format

coordinates of the non-zero entries of the sparse matrix. This normally takes
the form of a list of row numbers and a list of column numbers of the non-empty
cells of the table. To turn a data table with nominal variables (see Section 3)
into coordinate format, we need a process which I will call factoriඋation.factorization

As an example, consider the data in Table 9.

Language has phoneme
English θ
English x
English f
German x
German f
German pf

Table 9: Example data linking languages to its phonemes

Language θ x f pf
English 1 1 1 0
German 0 1 1 1

Table 10: Incidence coding of the data in Table 9

Basically, factorization performs two subtaskts, namely it (i) transforms a
nominal variable into a list of unique names and (ii) returns the original nomi-
nal variable as a list of ranks. For example, the column ‘Language’ from Table
9 will be transformed into the unique category-names [English, German] and the
ranks [1,1,1, 2,2, 2]. Doing the same factorization for the second columns ‘has
phonemes’ transforms this column into the unique names [θ, x, f, pf] and the
ranks [1,2,3, 2,3, 4].

Now, with two factorized columns we can easily make a sparse matrix us-
ing the coordinate format. For example, we can take the factorized ranks from
‘Language’ as row coordinates x = [1,1,1, 2,2, 2] and the factorized ranks from
‘has phonemes’ as column coordinates y = [1,2,3, 2,3, 4] to obtain an inci-
dence matrix as shown in Table 10, with the coordinates specifying the cells

16

starting to count from the top left.
Stripping away the row names and the column names, we are left with the

following matrix T . Instead of the expected zeros, I have used dots in the table
to highlight the fact that this matrix is a sparse matrix. In a sparse matrix format
the zeros are left unspecified. Only the entries as listed by the coordinates are
explicitly mentioned.

C =

�
1 1 1 ·
· 1 1 1

�
5.2 Special Sparse Matrices
A special kind of a sparse matrix in coordinate format is a t൰pe-token matrix.type-token matrix

For a type-token matrix only one column of a data table is used. This column is
factorized and the ranks are used as the column coordinates of the coordinate
format. The row coordinates are simply the numbers 1 to N , with N being the
number of rows of the original data table.

For example, the first column ‘Language’ from Table 9 is factorized into
the ranks [1,1, 1,2, 2,2] as column coordinates, with the row coordinates 1
through 6, i.e. x = [1,2, 3,4, 5,6]. This specifies the sparse type-token matrix
CL .

Doing the same for the second column ‘has phoneme’ from Table 9, we ob-
tain a sparse type-token matrix CP with column coordinates y = [1,2, 3,2, 3,4]
and row coordinates 1 through 6, i.e. x = [1,2,3, 4,5, 6]. Now note that the
matrix product C T

L · CP gives exactly the matrix C from above.

C T
L · CP =

�
1 1 1 · · ·
· · · 1 1 1

�
·

1 · · ·
· 1 · ·
· · 1 ·
· 1 · ·
· · 1 ·
· · · 1

=
�

1 1 1 ·
· 1 1 1

�
= C

A special kind of type-token matrix is a permutation matrix in whichpermutation matrix

the column coordinates are a permutation of the row coordinates 1 through
N . For example, for N = 5, the row coordinates are x = [1,2, 3,4, 5], and the
column coordinates are a permutation of the numbers 1 through N , e.g. y =
[3,5, 1,4, 2], specifying the following permutation matrix. Such permutation
matrices can be used to reorder rows or columns of other matrices to make

17

them semanticall൰ conformable (see Footnote 2)

C =

· · 1 · ·
· · · · 1
1 · · · ·
· · · 1 ·
· 1 · · ·

6 Identity, Diagonal and Unit Matrices
As already alluded to various times in the previous sections, the basic matrix
product will mostly not give precisely the intended results. In most cases some
level of ‘massaging’ is necessary to balance the effects of higher and lower fre-
quencies in the data. There is an enormous variety of possible weightings and
normalisations proposed in the literature, but I will only discuss a few major
possibilities here, using matrix manipulations to derive them. For these ma-
nipulations (that will be discussed in the next sections), we need some special
matrices: (i) the identity matrix, (ii) diagonal matrices, (iii) diagonal block
matrices (iv) shift matrices, and (v) unit matrices.

First, the identit൰ matrix (mostly written with a capital I) is a squareidentity matrix

matrix with 1s on the diagonal, and zeros elsewhere. Any matrix product with
I results in no change, i.e. A · I = I ·A= A. So the identity matrix functions just
like the number 1 with normal multiplication, i.e. a ∗ 1 = 1 ∗ a = a. The size
of the identity matrix of course differs depending on the context. For example,
the product A47 · I implies that the identity matrix is of size 7× 7, otherwise it
would not be conformable with A. To be explicit, one could write A47 · I77, but
this is mostly left implicit.

I44 =

 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

Second, a diagonal matrix is similar to the identity matrix in that alldiagonal matrix

entries are zero, except for those on the diagonal. However, the diagonal can
consist of all kind of different numbers, and not just of 1s. The typical con-
struction of a diagonal matrix is that a vector of numbers, e.g. v = (2,5,8, 3)

18

is turned into a diagonal matrix of size 4× 4 by using the operator diag(v).

diag(v) =

 2 0 0 0
0 5 0 0
0 0 8 0
0 0 0 3

Note that diag(v) ·A is not the same as A ·diag(v), just as in general the matrix
product is not commutative (i.e. A · B ̸= B · A), except for a few special cases
(for examples, see below).

Third, a diagonal block matrix is like a diagonal matrix, except thatdiagonal block

matrix the entries on the diagonal can be matrices themselves. For example, consider
the index matrix X from Section 3. This is a diagonal block matrix, with two
blocks of size 1× 3 and 1× 2.

X =

�
1 1 1 0 0
0 0 0 1 1

�
Also the product X T · X is a block diagonal matrix, this time with two block of
size 3× 3 and 2× 2:

X T · X =

1 0
1 0
1 0
0 1
0 1

 ·
�

1 1 1 0 0
0 0 0 1 1

�
=

1 1 1 0 0
1 1 1 0 0
1 1 1 0 0
0 0 0 1 1
0 0 0 1 1

Fourth, a shift matrix is similar to the identity matrix, except that theshift matrix

entries are not on the main diagonal, but on a ‘shifted’ diagonal. The two most
important shift matrices are the upper shift matrix U and the lower shift
matrix L. Note that U = LT .

U55 =

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

 , L55 =

0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

When multiplying a matrix A with a shift matrix, this has the effect that all
entries of A are shifted, for example:

U44 · A=
 0 1 0 0

0 0 1 0
0 0 0 1
0 0 0 0

 ·
 1 1 1 1

1 2 2 1
1 2 2 1
1 1 1 1

=
 1 2 2 1

1 2 2 1
1 1 1 1
0 0 0 0

19

Finally, a unit matrix, sometimes also called a ‘matrix of ones,’ is a matrixunit matrix

that consists completely of 1s. Such matrices can have any size, so the size
mostly has to be explicitly indicated. As a notation, either a number ‘1’ with
subscripts is used, or a capital J . Note the difference between the following
two products:

diag(v) · 144 =

 2 0 0 0
0 5 0 0
0 0 8 0
0 0 0 3

 ·
 1 1 1 1

1 1 1 1
1 1 1 1
1 1 1 1

=
 2 2 2 2

5 5 5 5
8 8 8 8
3 3 3 3

144 · diag(v) =

 1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

 ·
 2 0 0 0

0 5 0 0
0 0 8 0
0 0 0 3

=
 2 5 8 3

2 5 8 3
2 5 8 3
2 5 8 3

A very useful unit matrix is a unit matrix with only one row or one col-

umn. These unit matrices effectively compute the column sums or rows sums
of another matrix A, respectively. For example:

Row sums: A43 · 131 =

 4 1 0
5 1 0
2 1 1
7 0 1

 ·
 1

1
1

=
 5

6
4
8

Column sums: 114 · A43 =
�

1 1 1 1
� ·
 4 1 0

5 1 0
2 1 1
7 0 1

= � 18 3 2
�

However, note that most matrix algebra implementations have special, highly
efficient, functions for taking row or column sums that are preferably over the
explicit multiplication with a unit-matrix. However, for notational reasons the
product with the unit-matrix is preferable. Also note that large unit-matrices
are not sparse in current implementations.7

The following combination of diagonal and unit matrices will become useful
later when dealing with sparse matrices. Basically, when a 1-column matrix
AN1 is multiplied with a 1-row matrix B1M , then the result will be an N × M
matrix CN M (see the end of Section 2). This product can be reformulated as a
product of diagonal matrices and a unit matrix as follows:

AN1 · B1M = diag (AN1) · 1N M · diag (B1M)
7 Sparse unit-matrices would of course be possible, for example by explicitly specifying a

constant 1, instead of assuming a constant zero by default.

20

7 Weighting, centering and normalisation
Three different kinds of ‘massaging’ of matrices will be discussed in this section:
(i) weighting of the rows and/or columns, (ii) centering, and (iii) normalisa-
tion of the rows (i.e. normalisation of the entities to be compared). Normally
not all of them are used at the same time, but technically it would be possible.
It is still to a large extend a question of gut feeling (or trial and error) which
option is the most profitable for a data set at hand. When these three different
operations are combined, then they are normally performed in the order dis-
cussed here, namely, first weighting, then centering of the weighted matrices,
and then normalisation of the weighted and/or centred matrices.

7.1 Weighting
Row and/or column weighting of a matrix are different ways to weight the
values in the matrix. For example, column weighting is found in the con-column weighting

cept of ‘inverse document frequency’ (IDF) as used in information retrieval.
Also the notion of the ‘gewichteter Identitätswert’ (GIW) in dialectometry, as
introduced by Hans Goebl, is a weighting of this kind. The basic principle is to
compute the sums of each column of a matrix, and then inversely weight the
frequencies of the columns by those sums. Formulated in this way, Goebl actu-
ally uses the square root of the inverse as a weight, i.e.

p
1/column sum, while in

information retrieval mostly the logarithm of this fraction is used, specifically
log(D/column sum), with D being the length of the column. Technically, this can
be formulated as a matrix manipulation as follows. Given a matrix AN P , the
column sums are given by 11N · AN P . Then, for example, the inverse of these
sums are put into a diagonal matrix, and then the product is taken with the
original matrix A. An example using a simple fraction is shown below:

A43 · diag

�
1

114 · A43

�
=

 4 1 0
5 1 0
2 1 1
7 0 1

 ·
 1

18 0 0
0 1

3 0
0 0 1

2

=

4
18

1
3 0

5
18

1
3 0

2
18

1
3

1
2

7
18 0 1

2

The same procedure also works for row weighting, although this is less

frequently used. row weighting basically works just as column weighting,row weighting

so one could for example normalise both rows and columns by the inverse
of the row or column sums. Note that the row weighting will be a diagonal
matrix added in front of the to-be-normalised matrix A. The following formula

21

describes a combination of row and column weighting, both by a simple inverse
weighting schema:

diag
�

1
AN P · 1P1

�
· AN P · diag

�
1

11N · AN P

�
The practical implementation using diagonal matrices is not the only pos-

sibility to compute weighted matrices. However, this approach is crucial to
retain sparsity.

7.2 Centering
centering is a special normalisation on rows, typically used in the Pearsoncentering

product moment correlation and the closely related Cramer’s ϕ. The basic
principle is that for each row the average is computed, and then this average is
deduced from the row. For the row average, we first have to compute the row
sum, though in a special way to get a matrix back of the same size as A, namely
AN P · 1PP , and divide this by the number P to get the average. The result is
then subtracted from the original matrix A:

A43 · 133

3
=

 4 1 0
5 1 0
2 1 1
7 0 1

 ·

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

=

5
3

5
3

5
3

6
3

6
3

6
3

4
3

4
3

4
3

8
3

8
3

8
3

A43 −
�

A43 · 133

3

�
=

 4 1 0
5 1 0
2 1 1
7 0 1

−

5
3

5
3

5
3

6
3

6
3

6
3

4
3

4
3

4
3

8
3

8
3

8
3

=

7
3 −2

3 −5
3

9
3 −3

3 −6
3

2
3 −1

3 −1
3

13
3 −8

3 −5
3

This normalisation can be nicely rewritten as

AN P −
�

AN P · 1PP

P

�
= AN P

�
I − 1PP

P

�
.

The portion between brackets C = I − 1PP
P is called the centering opera-centering operator

tor, as it performs the centering on a numerical matrix via a matrix product.
Note that the centering operator can easily be combined with the previous
row/column weighting as follows:

diag
�

1
AN P · 1P1

�
· AN P · diag

�
1

11N · AN P

�
·
�

I − 1PP

P

�
22

7.3 Centering for Sparse Matrices
The centering operator has the interesting properties that, first, C · C = C , as
centering an already centred matrix does not change anything anymore, and,
second, C = C T because C is symmetric. This implies that the matrix product
between two centred matrices reduces to just one centering operation:

(AN P · CPP) · (BM P · CPP)
T = A · C · C T · BT = A · C · BT

An important drawback of centering is that the centering operator is not
sparse, and thus a centred matrix is likewise not sparse. For large sparse matri-
ces this approach to centering is thus not a real option. However, it is possible
to compute a matrix product between two centred sparse matrices by assum-
ing that only those pairs of rows that do share some characteristics have to be
centred (i.e. those cells for which (A · BT)binary = 1). This can be implementedsparse centering

by taking into account that:

AN P · 1PP · BT
M P = (AN P · 1P1) ·

�
11P · BT

M P

�
= (AN P · 1P1) · (BM P · 1P1)

T

and, using the identity proposed at the end of Section 6, that:

(AN P · 1P1) · (BM P · 1P1)
T = diag (AN P · 1P1) ·

�
AN P · BT

M P

�
binary · diag (BM P · 1P1)

leading to the following approach for the centred matrix product of two sparse
matrices A and B:

A · C · BT = A ·
�

I − 1PP

P

�
· BT = A · I · BT − A · 1PP

P
· BT =

A · BT − diag (A · 1P1) ·
(A · BT)binary

P
· diag (B · 11P)

Note that this last step is an approximation to centering, because the ze-
ros are not centred. In practice with sparse matrices this mostly leads to just
small differences to the non-sparse implementation of centering (i.e “Pearson
correlation”). The strongest deviation occurs in the slightly negative correla-
tion values. When those values are important for any computation, then this
approximation should not be used. The problem is most virulent in situation in
which many non-zero values are correlated with zero values. Any correction
for these errors will greatly decrease the computational efficiency.

23

7.4 Normalisation
Third, row normalisation technically works just as row weighting (as dis-row normalisation

cussed above). However, in practice row normalisation is mostly used after
other ‘massaging’ has already been performed. The most common normalisa-
tion uses an euclidean norm, which is the same as standard deviation ineuclidean norm

standard deviation statistics. The reason for these decisions is that the resulting similarity value
in the end will then nicely be normalised between −1 and +1.

In practice, given any matrix A (possibly with already some columns nor-
malisation or centering applied), the Euclidean norm is computed for all row
vectors of the matrix. The Euclidean norm of a vector (v1, v2, v3 . . . vn) is written
as ∥v∥2 and defined as:

∥v∥2 =
√√√ n∑

i=1

v2
i

In terms of matrices, applying the Euclidean norm to all rows at once, this
becomes the following (note that the various powers of matrices are entry-wise
operations, not a matrix product of A with itself):q

A2
N P · 1P1 or written differently:

�
A2

N P · 1P1

�1/2

The second formulation already suggests that instead of the number 2 also other
numbers are possible. Indeed, there is a whole family of norms depending on
the number used, i.e. (Ax

N P ·1P1)
1/x . Most interestingly, with x = 1 this reduces

to the row sums that we have already seen before. The inverses of these norms
are then used as row normalisation. For example, when the matrix A is first
centred as B and then row-normalised as C it will look as follows:

B = AN P ·
�

I − 1PP

P

�
and then C = diag

1q

B2
N P · 1P1

!
· B

The crucial difference between row normalisation and row weighting
(which are technically pretty similar) is that row normalisation is only applied
after all other ‘massaging’ has already taken place. Row normalisation is only
applied to normalise all results to values between 0 and 1, so it is performed
on top of any weighting or centering. If there is no weighting or centering ap-
plied, then row normalisation is in practice the same as row weighting with an
Euclidean norm.

24

7.5 Famous Measures of Association
With these different kinds of ‘massaging’ some famous measures of association
(or similarity) can be computed. For all these association measures we want
to compute the association between all rows of a matrix A and all rows of a
matrix B (Note that these two matrices might be the same matrix). Now, in-
stead of just taking the matrix product A · B, we first ‘massage’ the individual
matrices, and then take the matrix product. Depending on the normalisation,
this matrix product will results in the following association measures: (i) Pear-
son’s correlation coefficient r, by using no weighting, but centering andcorrelation

coefficient row normalisation, (ii) Cramer’s ϕ is the same as the Pearson correlation coef-
ficient when the original matrices only contain zeros and ones, (iii) the cosinecosine similarity

similarit൰, by using no weighting, no centering, but only row normalisation,
and (iv) TF-IDF (‘term frequency - inverse document frequency’) by columnTF-IDF

weighting, no centering, and row normalisation.

8 Observed vs. Expected
Another, slightly different approach to the ‘massaging’ of a matrix product A·BT

defines a notion of statistical expectation for the result of the matrix product.
So we start with two matrices A and B (which might be weighted, but not cen-
tred or normalised as described in the previous paragraph) and then define the
matrix with the observed association ‘O’ as A·BT . This observed associationobserved

association matrix is compared with a matrix with the expected association ‘E’. There
expected

association
exist various different ways to combine O and E into a measure of association.
But the first question is how to define the expectation. For this definition we
have to distinguish between numerical and nominal data.

8.1 Expectation of Numerical Data
Consider as an example two vectors v = (3,7,4, 9) and w = (1,5,5, 8). The
dot product gives the observed association O = v · w equals (3 ∗ 1) + (7 ∗ 5) +
(4 ∗ 5) + (9 ∗ 8) = 130. As a basic statistical expectation for this similarity
one can just start with the average of both vectors, e.g. v̂ = 3+7+4+9/4 = 23/4

and ŵ = 1+5+5+8/4 = 19/4. These averages represent a basic estimate of the
probabilities of the values in these vectors. The product of these values will be
an expectation, and that product has to be added together four times (as there
are four numbers in the vectors). So, the expected association would then be
E = v̂ ∗ ŵ ∗ 4 = 23/4 ∗ 19/4 ∗ 4 ≈ 109. This means that the observed association
(O = 130) is higher than the expected association (E = 109), which suggests a

25

conclusion that the vectors v and w are more similar than expected from chance
alone.

This basic estimate of expectation can easily be formulated for complete
matrices. We simply take the sum of each row from AN P divide this by the
lengths of the rows P, and do likewise for each row from BM P . This represents
taking the averages of all rows. Then we take all pairwise products of these
values, and multiply this with P. Note that the P ’s partially cancel each other,
resulting in a expectation matrix E of size N ×M :

EN M =
(AN P · 1P1)

P
· (BM P · 1P1)

T

P
∗ P =

(AN P · 1P1) · (BM P · 1P1)
T

P

Strictly speaking, this is just one of the numerous ways to define an expec-
tation. Depending on what is known about the data, other expectations might
be formulated.

8.2 Expectation, Centering and Sparsity
There is a strong similarity between the calculation of the expectation and cen-
tering. This is no coincidence, as centering is the process reducing the expec-
tation to zero. This is the reason why comparing observed vs. expected is not
feasible for centred matrices, because some simple arithmetic shows that the
average of a centred matrix is zero.

AN P ·
�

I − 1PP

P

�
· 1P1 = AN P · 1P1 − AN P · 1PP

P
· 1P1 = AN P · 1P1 − AN P · 1P1 = 0

We can also see the similarity between the calculation of centering and the
calculation of the expectation by slightly reformulating the formula for the
matrix with the expected values:

EN M =
(AN P · 1P1) · (BM P · 1P1)

T

P
=

AN P · (1P1 · 11P) · BT
M P

P
= AN P · 1PP

P
· BT

M P

This reformulation makes clear that the calculation of an expectation matrix
loses sparsity when the matrices A and B are sparse. There is a trick to keep
sparsity, basically by only calculating the expectation for those cells of the
matrix in which there is at least some similarity between A and B, i.e. for those
cells in which (A · BT)binary = 1. This leads to the following sparse calculation
of the expectation matrix:

EN M = diag (AN P · 1P1) ·
(A · BT)binary

P
· diag (BM P · 11P)

26

8.3 Expectation of Nominal Data
Two conformable incidence matrixes AN P and BM P necessarily share the same
index matrix XQP (see Section 3). The expectation matrix is then given by:

EN M = A · X T · X
X T · X · X T · X · B

T

Although this looks radically different, this expectation is actually similar to
the definition of expectation for numerical data above. Basically, the fraction
in the middle is a block diagonal matrix consisting of square blocks of the form
1Z Z/Z. All Q nominal variables are represented by one such block, in which Z is
the number of values of each variable. Note that the product X T · X is sparse,
and thus that here 0/0= 0.

In the situation with only one nominal variable, the index matrix XQP re-
duces to 11P and thus:

EN M = A · 1PP

P
· BT

8.4 Famous Measures of Association
There are many measures of association that can be formulated as a combina-
tion of observed O and expected E matrices, and only a very limited selection
of examples will be presented here. Most of these measures are positive when
O > E, negative when O < E, and zero when O = E. They are normally not
bound between −1 and +1, but can (theoretically) attain infinite high or low
results.

Care has to be taken in the following calculations with handling the zeros
in sparse matrices. Basically, when both O and E are sparse (with identical
empty cells), then the following measures should not be calculated for those
empty cells. Or, differently formulated, we have to define that 0/0= 0 and that
log(0/0) = 0.

The first measure is called pearson residuals (PR). This name derivespearson residuals

from fact that Pearson’s χ2 statistic is the sum of the squares of these values.

Pearson Residuals (PR)= O− Ep
E

The second measure presented here is the pointwise mutual informa-pointwise mutual

information tion (PMI). This name derives from the fact that mutual information can be
seen as a weighed average of these values. PMI is defined in terms of probabil-
ities, but assuming that our values are uniformly distributed (which is actually

27

in most linguistic cases a wrong assumption), these probabilities can easily
transformed into our O and E values, as shown below. In bioinformatics this is
known as the log-odds scores.8log-odds scores

Pointwise Mutual Information (PMI)= log

�
px y

px ∗ py

�
= log

�
N ∗ px y

N ∗ px ∗ py

�
= log

�
O
E

�
A slightly more complex computation of the PMI assumes that the proba-

bilities follow a poisson distribution. This is typically suitable in situation with
binary characteristics and with heavy-tailed phenomena of interest (i.e. some
observations are highly frequent, while there are very many that are rare). Sit-
uations like comparing typological parameters across languages, or sounds or
words in texts are typical examples of such distributions. The probability is then
defined as follows, with ki being the observed frequency of the phenomenon i,
and λ a parameter to be estimated:

p(i) =
λki e−λ

ki!

The parameter λ can be estimated as the average frequency of all phenomena
ki . If there are n different phenomena to be studied (e.g. letters in a text), then
λ can be understood as a token-type ratio.

λ=
1
n

n∑
i=1

ki =
number of tokens
number of types

Expressed in terms of matrices, this all results in the following measure of as-
sociation. Given AN P and BM P , then comparing all N to all M using the binary
characteristics P, we have the row sums FA

N1 = AN P1P1 and F B
M1 = BM P1P1, and

the token/type constants λA = 11N FA
N1/N and λB = 11M F B

M1/M, so using

log pi = log

�
λki e−λ

ki!

�
= ki logλ−λ− log ki!

8 Confusingly, this is not related to log-odds (‘logits’) or the odds ratio from logistic regres-
sion. Actually, log-odds is a bit a misnomer here, the coinage seems to go back to Altschul
1991:557. The reason for the log-odds name seems to be that p(x ,y)

p(x)∗p(y) =
p(x |y)
p(x) , and this is

interpreted as the ‘odds’ of (i) x occurring when also y occurs, relative to (ii) x occurring
overal.

28

we can define

DA = diag
�
FA logλA−λA− log FA!

�
DB = diag

�
F B logλB −λB − log F B!

�
Then, as above, defining ON M = AN P ·BT

M P and Obin as the binary version of O,
we derive the token/type constant λO = 11N ON M 1M1/(N∗M), so that we can define:

PO = O logλO −λO − logO!

PA = DA ·Obin

PB = Obin · DB

Then finally using definition of PMI

PMI= log

�
px y

px py

�
= log px y − log px − log py

we get the poisson-based pointwise mutual information measure of as-poisson-based

pointwise mutual

information

sociation
PMIpoisson = PO − PA− PB

The third measure of association between two matrices is based directly on
the Poisson distribution, which might thus be calculated as follows:

EO ∗ e−E

O!

However, this formulation is only defined when the observed values O are
whole numbers, and the results of this formula gives a probability value, i.e.
a good association will give values close to zero (e.g. with significance below
0.01 or so). A more suitable measure of association is obtained by taking the
negative logarithm of this, which results in:

− log

�
EO ∗ e−E

O!

�
= E + log(O!)−O ∗ log(E)

Note that the log(O!) is easy to approximate computationally by using the
logarithm of the Γ -function instead of the factorial (e.g. using the function
lfactorial in R). However, there are still some difficulties with this measure
of association. The first problem is that this formula evaluates the difference
between O and E, which implies that the result is both positive when O > E
and when O < E. To separate between these crucially different cases, it is

29

necessary to add a correct sign, namely a plus when O > E and a minus when
O < E. This can be achieved by multiplying the formula with, for example,
something like sign(O − E). The second problem is that the formula does not
reach zero when O = E, but the result for O = E turns out to depend on the size
of O (which is difficult to interpret). Fortunately, this can easily be corrected
by subtracting the case with O = E, leading to a somewhat surprising result.9

[E + log(O!)−O ∗ log(E)]− [O+ log(O!)−O ∗ log(O)] = O ∗ log (O/E)− (O− E)

As explained above, the correct sign has to be added, so the resulting poissonpoisson association

association measure becomes:
Poisson Association= sign(O− E) ∗ (O ∗ log (O/E)− (O− E))

Out[71]=

5 10 15 20

-2

2

4

6

Pearson Residuals

Poisson

Pointwise Mutual Information

Figure 4: Comparing three measures of association for an observed value of 10, and ex-
pected values between 0 and 20.

Figure 4 shows a comparison of these three measures of association for
an observed value of O = 10, and the expectation ranging between E = 0
and E = 20 on the x-axis. For all these measures, the result is positive when
O > E (left), negative when O < E (right), and zero when O = E. Note that the
Poisson measure shows the strongest differentiation, in that for expected values
close to the observed value of 10, the Poisson measure is closest to zero, while
for expected values far from the observed value of 10, the Poisson measure is
further away from zero than the other measures.

9 Correction for Missing Data
A more intricate approach to estimate the expected values takes into account
the distribution of missing information. With linguistic data, missing infor-
9 The result looks a bit like a combination of the Pointwise Mutual Information (PMI) and

the Pearson Residuals (PR), namely O ∗ PMI−pE ∗ PR.

30

mation is a substantial problem, possible strongly influencing any measure of
association. Fortunately, it turns out to be relatively easy to add a correction
for missing information. As proposed in Section 1, when there is missing data
in a data table, this is best coded as zero in the data matrix A. The presence
of missing data is then coded in a separate ‘data availability’ matrix D of the
same size as A.

For a data table with nominal data (see Section 3) the matrix with available
data D can be derived easily from the incidence matrix A and the accompanying
index matrix X by taking the product of these two matrices: D = A · X T . Note
that D will have the size of the original data table, but not the size of the
incidence or index matrices.

9.1 Correcting the Matrix Product
Now, given two data matrices Aand B and a ‘massaged’ similarity A·BT , and two
data availability matrices DA and DB, then the availabilit൰ product DA · DT

Bavailability

product can be used to correct for data availability. Any weighting and normalisation
that was applied to A and B should also be applied to DA and DB (but not center-
ing!). Note that all matrices have to be weighted and normalised individually:
it is not the same weighting or normalising matrices that can be reused! The
corrected similarity is then simply:

A · BT

DA · DT
B

For example, given a nominal incidence matrix A (with accompanying index
matrix X), then a simple, uncorrected hamming similarit൰ (i.e. just countinghamming similarity

the number of similarities) is A ·AT . A corrected relative hamming similar-relative hamming

similarity it൰ (which is the same as Goebl’s relativer Identitätswert, RIW) is then (finally
leaving away all those central dots for the matrix product):

AAT

(AX T)(AX T)T
=

AAT

A (X T X) AT

Adding a column weight W , for example to emulate Goebl’s gewichtetergewichteter

identitätswert identitätswert (GIW), let’s define W = diag (11N · AN P)
−1/2. Remember

that W = W T because W is diagonal, and note that W · W = W 2 =
diag (11N · AN P)

−1. Then the corrected weighted similarity is:

(AW)(AW)T

(AX T W)(AX T W)T
=

A (W 2) AT

A (X T W 2X) AT

31

However, note that Goebl uses a special correction, which is actually a com-
bination of an unweighted correction for the differences (viz. AX T XAT − AAT)
and a weighted correction for the similarities (viz. AWWAT), leading to the
following formula:

GIW =
AWWAT

AX T XAT − AAT + AWWAT
=

A (W 2) AT

A (X T X − I +W 2) AT

9.2 Correcting the Expectation
With a comparison of observed vs. expected matrices, it is the expectation ma-
trix that will have to be corrected on the basis of the data availability. For
numerical data, a corrected expectation matrix is calculated as follows. Note
that this formula is not feasible for large sparse matrices. See the earlier dis-
cussion for methods to change this to sparse-friendly computations.

E =
�

A
1PP

P
B
�
∗
�

DA DT
B

DA
1PP
P DT

A

�
=

A 1PP BT

DA 1PP DT
B

�
DA DT

B

�
Interestingly, the definition for the expectation matrix for nominal variables

automatically incorporates the treatment of missing data.

10 Data Description
A specific data set will be conceived here as a collection of matrices. These
matrices interlink different kinds of information. For example, there might
be one matrix linking language (as rows) to language families (as columns).
Another matrix might link languages (as rows) to linguistic characteristics (as
columns), etcetera. To keep the matrices conformable, it is important that the
identity and the order of the entities is kept constant, so, for example, exactly
the same set of language in the same order occurs in both matrices.

The entities in the rows and the columns of the matrices fall into two cru-
cially different kinds. In the comparison of languages it is important to clearly
separate language-specific entities from comparative entities. The fail-language-specific

entities ure to clearly distinguish between these two kinds of information easily leads
to confusion. For example, phonemes of a language are language-specific enti-
ties, i.e. the phoneme /a/ from language X is not the same thing as the phoneme
/a/ from language Y. For comparative purposes these two language-specific
phonemes might be equated as being examples of the same phone ‘a’. How-
ever, such a linking of language-specific entities from different languages to
comparative entities is never easy, and always only approximately true.comparative

entities

32

words ngramslanguages

CONCEPTS NGRAMS

MwC NnN

GwnLwl
Figure 5: Linking schema of a wordlist data set. Language-specific entities are written in
lower case, and comparative entities are written with capitals. Comparative linking is shown
with vertical connections. Bidirectional arrows indicate many-to-many linkings, unidirec-
tional arrows indicate many-to-one linkings.

Yet, such comparative linking between language-specific entities andcomparative linking

comparative entities is crucial to perform any kind of language comparison.
Somewhere in a data set the language-specific entities of different languages
will have to be connected to each other to allow for language comparison at
all. Without any such comparative linking, language comparison is impossible.
However, such linking is the most difficult, laborious, and error-prone part of
any comparative project, so such linking should be reduced to a minimum of
easy-to-perform and hopefully uncontroversial cross-linguistic equations. One
of the goals of the current quantitative approach is to show that abstract high-
level cross-linguistic comparison is possible on the basis of low-level compara-
tive linking.

Figure 5 shows an linking schema of a wordlist data set (e.g. a collectionlinking schema

of Swadesh lists). Language specific entities are written in lowercase, while
comparative entities are written with capitals. For such a schema, I propose to
strictly display comparative entities at the top, and language-specific entities at
the bottom. In this way, any comparative linking is always shown by vertical
connections, while horizontal connections show language-specific connections.
The example in Figure ?? links five different kinds of entities by four set of
links, each of which is encoded as a matrix. These linking matrices are given a
mnemonic abbreviation (M for ‘meanings’, L for ‘languages’, G for ‘graphemes’,
and N for ‘ngrams’).

For example, the comparative matrix M links language-specific wordscomparative matrix

to comparative concepts. The dimensions of this matrix is w × C (also note
the capitalisation here), indicating that the words are listed as rows and the
concepts are listed as columns. This linking has bidirectional arrows in the
schema, indicating that the linking is many-to-many. A single concept is of
course linked to many different words from different languages (and possibly

33

also to multiple words from one language). However also one word can be
linked to various concepts, i.e. one and the same word from a specific language
can be linked to various comparative concepts. Note that in Swadesh lists this
is uncommon, but in larger wordlist projects this occurs rather often.

A simpler matrix in this example is L, which links all the words in the
data set to the language to which these words belong. This is a many-to-one
linking (indicated by the unidirectional arrow), as each word only belongs to
one language. Homographic words from different languages will of course
have to be treated separately. A more interesting linking is the language-language-specific

matrix specific matrix G. This matrix links each word to the ngrams of which this
word consists. Crucially, these links are completely language-specific, i.e. the
ngrams are separately specified for each language. Matrix G will thus be a
block diagonal matrix, with one block for each language.

11 Wordlist Analysis
A collection of wordlists is analysed here as shown in the linking schema Figure
5. In this practical applications, whenever a matrix product is written, it will
be assumed that there is some kind of ‘massaging’ necessary. However, at
first, these extra operations will not be explicitly specified, and only in later
steps the details will be discussed. Likewise, problems related to sparsity (or
better ‘density’) of some of the following calculations will be ignored. So, be
aware that just using the calculations below with large sparse datasets are not
computationally optimised yet.

11.1 Basic Wordlist Analysis
For any comparative conclusions, the comparative linking MwC is crucial. The
simplest conclusion of interest is the similarity between concepts, based on their
encoding by words. The underlying rationale of this similarity is that some-
times one word is linked to two different meanings, i.e. cases of homophony
or pol൰sem൰. The following formula thus counts how often two meanings arepolysemy

encoded by the same word across all languages.

SCC = M T
wC ·MwC

A variation on this theme is to establish the similarity between concepts
based on partial similarity of words. The following formula counts for all pairs
of meanings how often they share a language-specific ngram, i.e. the distribu-
tion of partial homophon൰.partial homophony

34

SCC = (M
T
wC Gwn) · (M T

wC Gwn)
T = M T

wC GwnGT
wnMwC

Reversing this formula results in another interesting result. The distribution
of language-specific ngrams over concepts GT

wnMwC can be used to investigate
the similarity between ngrams. When two ngrams from different languages
show a similar distribution across concepts, this is an indication of a regular
sound correspondence. Note that this formula calculates the similarity be-sound

correspondence tween all pairs of ngrams between all pairs of languages. There is not yet a
selection of ‘interesting’ sound correspondences.

Snn = (M
T
wC Gwn)

T · (M T
wC Gwn) = GT

wnMwC M T
wC Gwn

The similarity between words from different languages is a more complex
issue. For a comparison of words across language we need some mapping be-
tween graphemes. This could be derived from the previous Snn, but that in-
volves a further step of alignment that will be discussed later. An easier calcu-
lation of word similarit൰ involves another comparative linking NnN , whichword similarity

connects the language-specific ngrams to some kind of cross-linguistically har-
monised ngrams (e.g. IPA-based, or based on sound classes). Note that this
formula computes the similarity between all pairs of words, irrespective of the
distribution over concepts.

Sww = (GwnNnN) · (GwnNnN)
T = GwnNnN N T

nN GT
wn

Instead of looking at the similarity between words, it is probably even more
interesting to look at the similarity between whole languages. One simple way
to compare languages is to look a the global ngram similarity. In this com-global ngram

parison the distribution of words over concepts is ignored, and a language
is simply interpreted as an unordered set of words. For each language, the
global distribution of ngrams is computed by summing all ngrams per language
LT

wl GwnNnN and compare these (note that normalisation and sparsity manage-
ment become crucial here at the latest).

Sl l = (L
T
wl GwnNnN) · (LT

wl GwnNnN)
T = LT

wl GwnNnN N T
nN GT

wn Lwl

More telling is a so-called parallel ngram comparison. In such a compar-parallel ngram

ison, only the words that belong to the same concept are compared, and these
comparison are summed up to compare two languages. The result is strongly
correlated with an aggregated Levenshtein distance between two word lists,
but it is computationally much easier and quicker. Instead of looking at all
word comparisons Sww, we are now only interested in those word comparisons
within one concept. Logically, this can be computed by taking the following

35

entry-wise product Sww ∗ (MwC M T
wC), but note that this needlessly computes

many word similarities that are subsequently ignored. A better option is to use
a row-based Khatri-Rao product (GwnNnN)⊙MwC , which results in a matrix of
size w× (N ∗ C). This can be used to compute a language similarity as follows
(note that in this formula all four linking matrices are used).

Sl l = (L
T
wl · ((Gwn · NnN)⊙MwC)) · (LT

wl · ((Gwn · NnN)⊙MwC))
T

Note that (A⊙ B) · (A⊙ B)T = (A · AT) ∗ (B · BT) so we can indeed easily show
that using Sww ∗ (MwC M T

wC) is equivalent to using (GwnNnN)⊙MwC :

Sl l = (L
T
wl · ((Gwn · NnN)⊙MwC)) · (LT

wl · ((Gwn · NnN)⊙MwC))
T =

LT
wl · ((Gwn · NnN)⊙MwC) · ((Gwn · NnN)⊙MwC)

T · Lwl =

LT
wl · ((Gwn · NnN) · (Gwn · NnN)

T ∗MwC ·M T
wC) · Lwl =

LT
wl · (Sww ∗MwC ·M T

wC) · Lwl

11.2 Normalisation
[details to be added]

11.3 Extended Wordlist Analysis
Figure 6 shows an extended version of a linking schema for wordlist data.
Instead of pre-established ngram parsing, this schema uses a combination of
‘segments’ and ‘graphemes’ from which the ngrams can be derived. Also note
that there is a unidirectional arrow between words and concepts MwC . This
means that all words that occur with more than one concept are listed twice.
In which cases complete identity is present can be derived from the ‘segments’
and ‘graphemes’ linking.

words segmentslanguages

CONCEPTS PHONES

MwC PgP

WwsLwl graphemesTsg

SYMBOLS

SsU

Figure 6: Extended wordlist linking schema, including graphemic parsing. Ngrams can be
derived from this.

The basic idea of the ‘segments’ entities is to parse all words into segments
and interpret all these units as one long vector. For example, the three words

36

this is that might for example be parsed as 14 segments (including boundaries)
as follows: [# th i s # i s # th a t #]. The matrix W linking these 14 segments
(as columns) to 3 words (as rows) would then look as shown below. Note that
the order of the segments is the same as in the original strings. In this way we
will be be able to extract ordering information. Likewise, the matrix T links
these 14 (ordered) segments to the 6 different graphemes that occur (viz. [#
th i s a t]). This is an example of a t൰pe-token matrix (see Section 5.2). The
order of these graphemes in the columns is not important. Only the order of
the entities ‘segments’ in the rows is important.

Wws =

 # th i s # i s # th a t #
this · 1 1 1 · · · · · · · ·
is · · · · · 1 1 · · · · ·

that · · · · · · · · 1 1 1 ·

Lsg =

th i s a t
1 · · · · ·
th · 1 · · · ·

i · · 1 · · ·
s · · · 1 · ·

1 · · · · ·
i · · 1 · · ·
s · · · 1 · ·

1 · · · · ·
th · 1 · · · ·
a · · · · 1 ·
t · · · · · 1

1 · · · · ·

The graphemes are language-specific, implying that the type-token matrix T
consists of language-specific links. In practice, the linking in T will probably
most easily be constructed by using a linkage S to ‘universal’ symbols in the
data (i.e. all identical unicode symbols are treated as being the same, even
then they come from different languages). The language specific linking T can
be derived from the ‘universal’ linking using the language matrix L using the
Khatri-Rao Product ⊙ (see Section 2.3) as follows:

Tsg = SsU ⊙
�
W T

ws · Lwl

�
Now, the product of these two matrices, Wws · Tsg , gives the matrix Gwg

from Figure 5 linking words to language-specific unigrams. When two rows in

37

this Gwg matrix are completely identical, then the words are identical.

Gwg =Wws · Tsg =

 # th i s a t
this · 1 1 1 · ·
is · · 1 1 · ·

that · 1 · · 1 1

More interestingly, if we make a shifted variant of T by removing the first

row, and adding an extra row with zeros at the bottom, i.e by taking U · T (see
Section 6 on the upper shift matrix U), then we can derive the language-
specific linking of words to bigrams using a Khatri-Rao Product as follows:

Gwg2 =Wws

�
Tsg ⊙ UssTsg

�
The language-specific similarity between graphemes based on the neigh-

bouring frequency can be computed as follows (note that the product indicated
by the middle dot has to be normalised for frequency):

Sg g =
�
T T

sg UssTsg

� · �T T
sg UssTsg

�T

Note that these similarities are purely language-specific, so the resulting
Sg g matrix is a block diagonal matrix, with each block representing the sim-
ilarities within one language. These within-language similarities should be a
good predictor for a vowel-consonant differentiation, and maybe also for other
sound classes.

12 Notes
“transition matrix” can either mean substitution matrix for alignment or
stochastic matrix for Markov chains. In both cases, the identity matrix
is the simplest model: every substitution between state a to a gets 1, every
substitution between two different states gets 0. As a stochastic matrix, the
identity matrix represents stasis.

Substitution matrices use often pointwise mutual information (called ‘log-
odds scores’ in bioinformatics). Stochastic matrices use matrices P with proba-
bilities for transitions, in which each row and/or column adds up to zero, and
the stochastic matrix then is I − P.

(Note that this is only formulated for the case that the rows and columns
consist of the same entities. The situation with different entities is slightly
different.)

(Note that this is only formulated for nominal variables. continuous vari-
ables will need more complex transition specifications.)

38

	Tables and Matrices
	A Primer on Matrix Algebra
	Basic Manipulations
	Similarity of Observations: Matrix Product
	Cross-section of Characteristics: Khatri-Rao Product
	Combination of Characteristics: Block Matrices

	Nominal Data
	Graphs and Matrices
	Sparse Matrices
	Building Sparse Matrices
	Special Sparse Matrices

	Identity, Diagonal and Unit Matrices
	Weighting, centering and normalisation
	Weighting
	Centering
	Centering for Sparse Matrices
	Normalisation
	Famous Measures of Association

	Observed vs. Expected
	Expectation of Numerical Data
	Expectation, Centering and Sparsity
	Expectation of Nominal Data
	Famous Measures of Association

	Correction for Missing Data
	Correcting the Matrix Product
	Correcting the Expectation

	Data Description
	Wordlist Analysis
	Basic Wordlist Analysis
	Normalisation
	Extended Wordlist Analysis

	Notes

